Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 114-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The smallest number $A\infty$ is found such that for any sequence $Y=\{y_k,k\in\mathbb Z\}$ with $|\Delta^ny_k|\le1$ there exists a $u(t)$, $|u(t)|\le A$, for which the equation $y^n(t)=u(t)$ ($-\infty$) has a solution satisfying the conditions $$ y_k=\frac 1h\int_{-h/2}^{h/2}y(k+1)\,dt, $$ where $k\in\mathbb Z$, $1$. A similar problem is treated in $L_p(-\infty,\infty)$. It is shown that for $h=2m$ ($m$ a natural number) no such finite $A$ exists.
@article{MZM_1996_59_1_a10,
     author = {Yu. N. Subbotin},
     title = {Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {114--132},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a10/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
TI  - Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals
JO  - Matematičeskie zametki
PY  - 1996
SP  - 114
EP  - 132
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a10/
LA  - ru
ID  - MZM_1996_59_1_a10
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%T Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals
%J Matematičeskie zametki
%D 1996
%P 114-132
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a10/
%G ru
%F MZM_1996_59_1_a10
Yu. N. Subbotin. Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 114-132. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a10/

[1] Subbotin Yu. N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Tr. MIAN, 88, Nauka, M., 1967, 30–60 | MR | Zbl

[2] Subbotin Yu. N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN, 138, Nauka, M., 1975, 118–173 | MR | Zbl

[3] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Matem. zametki, 21:2 (1977), 161–172 | MR | Zbl

[4] Shevaldin V. T., “Ob odnoi zadache funktsionalnoi interpolyatsii”, Matem. zametki, 29:4 (1981), 603–622 | MR | Zbl

[5] Shevaldin V. T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN, 164, Nauka, M., 1983, 203–240 | MR | Zbl

[6] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | Zbl