Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 114-132
Voir la notice de l'article provenant de la source Math-Net.Ru
The smallest number $A\infty$ is found such that for any sequence
$Y=\{y_k,k\in\mathbb Z\}$ with $|\Delta^ny_k|\le1$ there exists a $u(t)$, $|u(t)|\le A$, for which the equation
$y^n(t)=u(t)$ ($-\infty$) has a solution satisfying the conditions
$$
y_k=\frac 1h\int_{-h/2}^{h/2}y(k+1)\,dt,
$$
where $k\in\mathbb Z$, $1$.
A similar problem is treated in $L_p(-\infty,\infty)$. It is shown that for $h=2m$ ($m$ a natural number) no such finite $A$ exists.
@article{MZM_1996_59_1_a10,
author = {Yu. N. Subbotin},
title = {Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals},
journal = {Matemati\v{c}eskie zametki},
pages = {114--132},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a10/}
}
TY - JOUR AU - Yu. N. Subbotin TI - Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals JO - Matematičeskie zametki PY - 1996 SP - 114 EP - 132 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a10/ LA - ru ID - MZM_1996_59_1_a10 ER -
%0 Journal Article %A Yu. N. Subbotin %T Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals %J Matematičeskie zametki %D 1996 %P 114-132 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a10/ %G ru %F MZM_1996_59_1_a10
Yu. N. Subbotin. Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 114-132. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a10/