On~solutions with generalized power asymptotics to systems of differential equations
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 851-861.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study methods for constructing particular solutions with nonexponential asymptotic behavior to a system of ordinary differential equations with infinitely differentiable right-hand sides. We construct the corresponding formal solutions in the form of generalized power series whose first terms are particular solutions to the so-called truncated system. We prove that these series are asymptotic expansions of real solutions to the complete system. We discuss the complex nature of the functions that are represented by these series in the analytic case.
@article{MZM_1995_58_6_a4,
     author = {V. V. Kozlov and S. D. Furta},
     title = {On~solutions with generalized power asymptotics to systems of differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {851--861},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a4/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - S. D. Furta
TI  - On~solutions with generalized power asymptotics to systems of differential equations
JO  - Matematičeskie zametki
PY  - 1995
SP  - 851
EP  - 861
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a4/
LA  - ru
ID  - MZM_1995_58_6_a4
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A S. D. Furta
%T On~solutions with generalized power asymptotics to systems of differential equations
%J Matematičeskie zametki
%D 1995
%P 851-861
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a4/
%G ru
%F MZM_1995_58_6_a4
V. V. Kozlov; S. D. Furta. On~solutions with generalized power asymptotics to systems of differential equations. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 851-861. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a4/

[1] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[2] Markeev A. P., “Rezonansy i asimptoticheskie traektorii v sistemakh Gamiltona”, PMM, 54:2 (1990), 207–212 | MR | Zbl

[3] Gromak V. I., “O resheniyakh vtorogo uravneniya Penleve”, Differents. uravneniya, 18:5 (1982), 753–763 | MR | Zbl

[4] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[5] Yoshida H., “Necessary condition for the existence of algebraic first integrals. I; II”, Celestial Mech., 31 (1983), 363–379, 381–399 | DOI | MR | Zbl

[6] Kuznetsov A. N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funktsion. analiz i ego prilozh., 23:4 (1989), 63–74 | MR | Zbl

[7] Furta S. D., “Ob asimptoticheskikh resheniyakh sistem differentsialnykh uravnenii s otklonyayuschimsya argumentom v nekotorykh kriticheskikh sluchayakh”, Matem. sb., 184:2 (1993), 43–56 | Zbl

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | Zbl

[9] Taliaferro S. D., “Instability of an equilibrium in a potential field”, Arch. Rat. Mech. and Anal., 109:2 (1990), 183–194 | DOI | MR | Zbl

[10] Tabor M., Weiss J., “Analytic structure of the Lorenz system”, Phys. Rev. Ser. A, 24:4 (1981), 2157–2167 | DOI

[11] Fournier J. D., Levine G., Tabor M., “Singularity clustering in the Duffing oscillator”, J. Phys. Ser. A. Math., Gen., 21 (1988), 33–54 | DOI | MR | Zbl

[12] Kozlov V. V., Palamodov V. P., “Ob asimtoticheskikh resheniyakh uravnenii klassicheskoi mekhaniki”, DAN SSSR, 163:2 (1982), 285–289