Indefinite metric and scattering by a~domain with a~small hole
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 837-850

Voir la notice de l'article provenant de la source Math-Net.Ru

For the problem of plane waves scattered by a domain with a small hole, we suggest a model based on the theory of self-adjoint extensions of symmetric operators in a space with indefinite metric. For two-dimensional problems of scattering on a line with a hole and on a semi-ellipse connected by a hole with a half-plane, we justify the choice of extension that guarantees the coincidence of the model solution with the solution of the “actual” problem in the far zone with a high degree of accuracy.
@article{MZM_1995_58_6_a3,
     author = {A. A. Kiselev and I. Yu. Popov},
     title = {Indefinite metric and scattering by a~domain with a~small hole},
     journal = {Matemati\v{c}eskie zametki},
     pages = {837--850},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/}
}
TY  - JOUR
AU  - A. A. Kiselev
AU  - I. Yu. Popov
TI  - Indefinite metric and scattering by a~domain with a~small hole
JO  - Matematičeskie zametki
PY  - 1995
SP  - 837
EP  - 850
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/
LA  - ru
ID  - MZM_1995_58_6_a3
ER  - 
%0 Journal Article
%A A. A. Kiselev
%A I. Yu. Popov
%T Indefinite metric and scattering by a~domain with a~small hole
%J Matematičeskie zametki
%D 1995
%P 837-850
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/
%G ru
%F MZM_1995_58_6_a3
A. A. Kiselev; I. Yu. Popov. Indefinite metric and scattering by a~domain with a~small hole. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 837-850. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/