Indefinite metric and scattering by a~domain with a~small hole
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 837-850.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the problem of plane waves scattered by a domain with a small hole, we suggest a model based on the theory of self-adjoint extensions of symmetric operators in a space with indefinite metric. For two-dimensional problems of scattering on a line with a hole and on a semi-ellipse connected by a hole with a half-plane, we justify the choice of extension that guarantees the coincidence of the model solution with the solution of the “actual” problem in the far zone with a high degree of accuracy.
@article{MZM_1995_58_6_a3,
     author = {A. A. Kiselev and I. Yu. Popov},
     title = {Indefinite metric and scattering by a~domain with a~small hole},
     journal = {Matemati\v{c}eskie zametki},
     pages = {837--850},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/}
}
TY  - JOUR
AU  - A. A. Kiselev
AU  - I. Yu. Popov
TI  - Indefinite metric and scattering by a~domain with a~small hole
JO  - Matematičeskie zametki
PY  - 1995
SP  - 837
EP  - 850
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/
LA  - ru
ID  - MZM_1995_58_6_a3
ER  - 
%0 Journal Article
%A A. A. Kiselev
%A I. Yu. Popov
%T Indefinite metric and scattering by a~domain with a~small hole
%J Matematičeskie zametki
%D 1995
%P 837-850
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/
%G ru
%F MZM_1995_58_6_a3
A. A. Kiselev; I. Yu. Popov. Indefinite metric and scattering by a~domain with a~small hole. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 837-850. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/

[1] Pavlov B. S., “Teoriya rasshirenii i yavnoreshaemye modeli”, UMN, 42:6 (1987), 99–131 | MR

[2] Popov I. Yu., “The extension theory and diffraction problems”, Lect. Notes Phys., 324, 1989, 218–229 | Zbl

[3] Pavlov B. S., Popov I. Yu., “Rasseyanie na rezonatorakh s malym i s tochechnym otverstiyami”, Vestn. LGU, 1984, no. 13, 116–118 | Zbl

[4] Zimnev M. M., Popov I. Yu., “Vybor parametrov modeli schelei nulevoi shiriny”, ZhVM i MF, 24:3 (1987), 466–470 | MR

[5] Shondin Yu. G., “Kvantovomekhanicheskie modeli v $\mathbb R_n$, svyazannye s rasshireniem operatorov energii v prostranstve Pontryagina”, TMF, 74:3 (1988), 331–344 | MR | Zbl

[6] Berezin F. A., “O modeli Li”, Matem. sb., 60:4 (1963), 425–446 | MR

[7] Krein M. G., Langer G. K., “O defektnykh podprostranstvakh i obobschennykh rezolventakh ermitova operatora v prostranstve $\Pi _x$”, Funktsion. analiz i ego prilozh., 5:2 (1971), 59–71 ; 3, 54–69 | MR | Zbl | Zbl

[8] Vatson G. N., Teoriya besselevykh funktsii, T. 1, IL, M., 1960

[9] Mors F., Feshbakh G., Metody teoreticheskoi fiziki, T. 2, IL, M., 1960

[10] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii, funktsii Lame i Mate, Nauka, M., 1967

[11] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, IL, M., 1953

[12] Babich V. M., “Ob analiticheskom prodolzhenii rezolventy vneshnikh zadach dlya operatora Laplasa na vtoroi list”, Teoriya funktsii i ikh prilozh., no. 3, KhGU, Kharkov, 1966, 151–157 | MR

[13] Popov I. Yu., “Rezonator Gelmgoltsa i teoriya rasshirenii operatorov v prostranstve s indefinitnoi metrikoi”, Matem. sb., 183:3 (1992), 3–37 | Zbl

[14] Popov I. Yu., “The resonator with narrow slit and the model based on the operator extension theory”, J. Math. Phys., 33:11 (1992), 3794–3801 | DOI | MR | Zbl

[15] Gadylshin R. R., “Metod sraschivaemykh asimptoticheskikh razlozhenii v zadache ob akusticheskom rezonatore Gelmgoltsa”, Prikl. matem. i mekh., 56:3 (1992), 412–418 | MR | Zbl