Indefinite metric and scattering by a~domain with a~small hole
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 837-850
Voir la notice de l'article provenant de la source Math-Net.Ru
For the problem of plane waves scattered by a domain with a small hole, we suggest a model based on the theory of self-adjoint extensions of symmetric operators in a space with indefinite metric. For two-dimensional problems of scattering on a line with a hole and on a semi-ellipse connected by a hole with a half-plane, we justify the choice of extension that guarantees the coincidence of the model solution with the solution of the “actual” problem in the far zone with a high degree of accuracy.
@article{MZM_1995_58_6_a3,
author = {A. A. Kiselev and I. Yu. Popov},
title = {Indefinite metric and scattering by a~domain with a~small hole},
journal = {Matemati\v{c}eskie zametki},
pages = {837--850},
publisher = {mathdoc},
volume = {58},
number = {6},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/}
}
A. A. Kiselev; I. Yu. Popov. Indefinite metric and scattering by a~domain with a~small hole. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 837-850. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a3/