On~the relation between the Jackson and Jung constants of the spaces $L_ p$
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 828-836

Voir la notice de l'article provenant de la source Math-Net.Ru

For any infinitely metrizable compact Abelian group $G$, $1\leqslant p\leqslant q\infty$, $n\in\mathbb N$, the following relations are proved: $$ K_{pq}(G,n,G)=d_{pq}(G,n,G)=J(L_p(G),L_q(G))=\varkappa_{pq}, $$ where $K_{pq}(G,n,G)$ is the largest Jackson constant in the approximation of the system of characters by polynomials of order $n$, $d_{pq}(G,n,G)$ is the best Jackson constant, $J(L_p(G),L_q(G))$ is the Jung constant of the pair of real spaces $(L_p(G),L_q(G))$, and $$ \begin{aligned} \varkappa_{pq}^q=\sup\biggl\{\inf_c\int_0^1|f(x)-c|^q\,dx \\ \qquad\qquad\times\biggl|\int_0^1\int_0^1|f(x)-f(y)|\biggr|^p\,dx\,dy\le1,\ f\in L_q[-1,1]\biggr\}. \end{aligned} $$
@article{MZM_1995_58_6_a2,
     author = {V. I. Ivanov},
     title = {On~the relation between the {Jackson} and {Jung} constants of the spaces $L_ p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {828--836},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a2/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - On~the relation between the Jackson and Jung constants of the spaces $L_ p$
JO  - Matematičeskie zametki
PY  - 1995
SP  - 828
EP  - 836
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a2/
LA  - ru
ID  - MZM_1995_58_6_a2
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T On~the relation between the Jackson and Jung constants of the spaces $L_ p$
%J Matematičeskie zametki
%D 1995
%P 828-836
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a2/
%G ru
%F MZM_1995_58_6_a2
V. I. Ivanov. On~the relation between the Jackson and Jung constants of the spaces $L_ p$. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 828-836. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a2/