On~a~theorem of Helly
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 818-827

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a group of problems related to the well-known Helly theorem on the intersections of convex bodies. We introduce convex subsets $K(f)$ of a compact convex set $K$ defined by the relation $$ K(f)=\operatorname{co}\biggl\{\frac N{N+1}x+\frac 1{N+1}f(x)\biggr\} \quad(x\in K\subset\mathbb R^N), $$ where $f\colon K\to K$ are continuous mappings, and prove that the intersection $\bigcap_{f\in F}K(f)$ is not empty; here $F$ is the set of all continuous mappings $f\colon K\to K$.
@article{MZM_1995_58_6_a1,
     author = {N. A. Bobylev},
     title = {On~a~theorem of {Helly}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {818--827},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a1/}
}
TY  - JOUR
AU  - N. A. Bobylev
TI  - On~a~theorem of Helly
JO  - Matematičeskie zametki
PY  - 1995
SP  - 818
EP  - 827
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a1/
LA  - ru
ID  - MZM_1995_58_6_a1
ER  - 
%0 Journal Article
%A N. A. Bobylev
%T On~a~theorem of Helly
%J Matematičeskie zametki
%D 1995
%P 818-827
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a1/
%G ru
%F MZM_1995_58_6_a1
N. A. Bobylev. On~a~theorem of Helly. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 818-827. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a1/