Distributive semiprime rings
Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 736-761

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a right distributive semiprime \textrm{PI} ring $A$ is a left distributive ring and for each element $x\in A$ there is a positive integer $n$ such that $x^nA=Ax^n$. We describe both right distributive right Noetherian rings algebraic over the center of the ring and right distributive left Noetherian \textrm{PI} rings. We also characterize rings all of whose Pierce stalks are right chain right Artin rings.
@article{MZM_1995_58_5_a8,
     author = {A. A. Tuganbaev},
     title = {Distributive semiprime rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {736--761},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Distributive semiprime rings
JO  - Matematičeskie zametki
PY  - 1995
SP  - 736
EP  - 761
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/
LA  - ru
ID  - MZM_1995_58_5_a8
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Distributive semiprime rings
%J Matematičeskie zametki
%D 1995
%P 736-761
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/
%G ru
%F MZM_1995_58_5_a8
A. A. Tuganbaev. Distributive semiprime rings. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 736-761. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/