Distributive semiprime rings
Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 736-761.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a right distributive semiprime \textrm{PI} ring $A$ is a left distributive ring and for each element $x\in A$ there is a positive integer $n$ such that $x^nA=Ax^n$. We describe both right distributive right Noetherian rings algebraic over the center of the ring and right distributive left Noetherian \textrm{PI} rings. We also characterize rings all of whose Pierce stalks are right chain right Artin rings.
@article{MZM_1995_58_5_a8,
     author = {A. A. Tuganbaev},
     title = {Distributive semiprime rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {736--761},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Distributive semiprime rings
JO  - Matematičeskie zametki
PY  - 1995
SP  - 736
EP  - 761
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/
LA  - ru
ID  - MZM_1995_58_5_a8
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Distributive semiprime rings
%J Matematičeskie zametki
%D 1995
%P 736-761
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/
%G ru
%F MZM_1995_58_5_a8
A. A. Tuganbaev. Distributive semiprime rings. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 736-761. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/

[1] Tuganbaev A. A., “Distributivnye koltsa i moduli”, Matem. zametki, 47:2 (1990), 115–123 | MR

[2] Tuganbaev A. A., “Distributivnye koltsa”, Matem. zametki, 35:3 (1984), 329–332 | MR | Zbl

[3] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977

[4] Tuganbaev A. A., “Distributivnye sprava i sleva koltsa”, Matem. zametki, 58:4 (1995), 604–627 | MR | Zbl

[5] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979

[6] Rowen L. H., Ring theory, Student edition, Academic Press, Boston, 1991 | Zbl

[7] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer-Verlag, Berlin, 1975 | Zbl

[8] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975

[9] Kash F., Moduli i koltsa, Mir, M., 1981

[10] Feis K., Algebra: koltsa, moduli i kategorii, T. 2, Mir, M., 1979

[11] Burgess W. D., Stephenson W., “An analogue of the Pierce sheaf for non-commutative rings”, Commun. Algebra, 6:9 (1978), 863–886 | DOI | MR | Zbl

[12] Burgess W. D., Stephenson W., “Rings all of whose Pierce stalks are local”, Commun. Algebra, 6:9 (1978), 863–886 | DOI | MR | Zbl

[13] Goodearl K. R., Von Neumann regular rings, Pitman, London, 1979 | Zbl