@article{MZM_1995_58_5_a8,
author = {A. A. Tuganbaev},
title = {Distributive semiprime rings},
journal = {Matemati\v{c}eskie zametki},
pages = {736--761},
year = {1995},
volume = {58},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/}
}
A. A. Tuganbaev. Distributive semiprime rings. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 736-761. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a8/
[1] Tuganbaev A. A., “Distributivnye koltsa i moduli”, Matem. zametki, 47:2 (1990), 115–123 | MR
[2] Tuganbaev A. A., “Distributivnye koltsa”, Matem. zametki, 35:3 (1984), 329–332 | MR | Zbl
[3] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977
[4] Tuganbaev A. A., “Distributivnye sprava i sleva koltsa”, Matem. zametki, 58:4 (1995), 604–627 | MR | Zbl
[5] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979
[6] Rowen L. H., Ring theory, Student edition, Academic Press, Boston, 1991 | Zbl
[7] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer-Verlag, Berlin, 1975 | Zbl
[8] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975
[9] Kash F., Moduli i koltsa, Mir, M., 1981
[10] Feis K., Algebra: koltsa, moduli i kategorii, T. 2, Mir, M., 1979
[11] Burgess W. D., Stephenson W., “An analogue of the Pierce sheaf for non-commutative rings”, Commun. Algebra, 6:9 (1978), 863–886 | DOI | MR | Zbl
[12] Burgess W. D., Stephenson W., “Rings all of whose Pierce stalks are local”, Commun. Algebra, 6:9 (1978), 863–886 | DOI | MR | Zbl
[13] Goodearl K. R., Von Neumann regular rings, Pitman, London, 1979 | Zbl