Recurrence of the integral of a~smooth three-frequency conditionally periodic function
Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 723-735

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove V. V. Kozlov's famous conjecture claiming that the integral of an analytic three-frequency conditionally periodic function with zero mean and incommensurable frequencies recurs. For a conditionally periodic function of class $C^2$ on $\mathbb T^n$, $n=2,3$, we prove that the integral recurs uniformly with respect to the initial data.
@article{MZM_1995_58_5_a7,
     author = {N. G. Moshchevitin},
     title = {Recurrence of the integral of a~smooth three-frequency conditionally periodic function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {723--735},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a7/}
}
TY  - JOUR
AU  - N. G. Moshchevitin
TI  - Recurrence of the integral of a~smooth three-frequency conditionally periodic function
JO  - Matematičeskie zametki
PY  - 1995
SP  - 723
EP  - 735
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a7/
LA  - ru
ID  - MZM_1995_58_5_a7
ER  - 
%0 Journal Article
%A N. G. Moshchevitin
%T Recurrence of the integral of a~smooth three-frequency conditionally periodic function
%J Matematičeskie zametki
%D 1995
%P 723-735
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a7/
%G ru
%F MZM_1995_58_5_a7
N. G. Moshchevitin. Recurrence of the integral of a~smooth three-frequency conditionally periodic function. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 723-735. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a7/