Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_58_5_a5, author = {T. Matos}, title = {Exact solutions of $G$-invariant chiral equations}, journal = {Matemati\v{c}eskie zametki}, pages = {710--716}, publisher = {mathdoc}, volume = {58}, number = {5}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a5/} }
T. Matos. Exact solutions of $G$-invariant chiral equations. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 710-716. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a5/
[1] Matos T., “Chiral equation in gravitational theories”, Proceedings of International Conference on Aspects of General Relativity and Mathematical Physics, eds. N. Bretón, R. Capovilla, T. Matos, Cinvestav, 1994, 176
[2] Belinskii V. A., Zakharov V. E., “Integrirovanie uravnenii Einshteina metodom obratnoi zadachi rasseyaniya i vychislenie tochnykh solitonnykh reshenii”, ZhETF, 74:6 (12) (1978), 1953–1971 | MR
[3] Kramer D., Neugebauer G., Matos T., “Bäcklund transforms of chiral fields”, J. Math. Phys., 32 (1991), 2727 | DOI | MR | Zbl
[4] Hussain V., “Self-dual gravity and the chiral model”, Phys. Rev. Lett., 72 (1994), 800 | DOI | MR
[5] Matos T., Plebański J., “Axisymmetric stationary solutions as harmonic maps”, Gen. Rel. Grav., 26 (1994), 477 | DOI | MR | Zbl
[6] Neugebauer G., Kramer D., Bäcklund transformation of Einstein–Maxwell fields, Preprint, Friederich Schiller Universität, Jena, 1991
[7] Matos T., “Subspaces and subgroups in five-dimensional gravity”, Ann. Phys., 46 (1989), 462 | DOI | MR | Zbl
[8] Matos T., Rodríguez G., Becerril R., “Exact solutions of $\operatorname {SL}(N,\mathbb R)$-invariant chiral fields. One- and two- dimensional subspaces”, J. Math. Phys., 33 (1992), 3521 | DOI | MR | Zbl
[9] Matos T., Wiederhold P., “$\operatorname {SL}(4,\mathbb R)$-invariant chiral fields”, Lett. Math. Phys., 27 (1993), 265 | DOI | MR | Zbl