Exact solutions of $G$-invariant chiral equations
Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 710-716.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is suggested for solving the chiral equations $(\alpha g_{,z}g^{-1})_{,\bar z}+(\alpha g_{,z}g^{-1})_{,z}=0$ where $g$ belongs to some Lie group $G$. The solution is written out in terms of harmonic maps. The method can be used even for some infinite-dimensional Lie groups.
@article{MZM_1995_58_5_a5,
     author = {T. Matos},
     title = {Exact solutions of $G$-invariant chiral equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {710--716},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a5/}
}
TY  - JOUR
AU  - T. Matos
TI  - Exact solutions of $G$-invariant chiral equations
JO  - Matematičeskie zametki
PY  - 1995
SP  - 710
EP  - 716
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a5/
LA  - ru
ID  - MZM_1995_58_5_a5
ER  - 
%0 Journal Article
%A T. Matos
%T Exact solutions of $G$-invariant chiral equations
%J Matematičeskie zametki
%D 1995
%P 710-716
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a5/
%G ru
%F MZM_1995_58_5_a5
T. Matos. Exact solutions of $G$-invariant chiral equations. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 710-716. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a5/

[1] Matos T., “Chiral equation in gravitational theories”, Proceedings of International Conference on Aspects of General Relativity and Mathematical Physics, eds. N. Bretón, R. Capovilla, T. Matos, Cinvestav, 1994, 176

[2] Belinskii V. A., Zakharov V. E., “Integrirovanie uravnenii Einshteina metodom obratnoi zadachi rasseyaniya i vychislenie tochnykh solitonnykh reshenii”, ZhETF, 74:6 (12) (1978), 1953–1971 | MR

[3] Kramer D., Neugebauer G., Matos T., “Bäcklund transforms of chiral fields”, J. Math. Phys., 32 (1991), 2727 | DOI | MR | Zbl

[4] Hussain V., “Self-dual gravity and the chiral model”, Phys. Rev. Lett., 72 (1994), 800 | DOI | MR

[5] Matos T., Plebański J., “Axisymmetric stationary solutions as harmonic maps”, Gen. Rel. Grav., 26 (1994), 477 | DOI | MR | Zbl

[6] Neugebauer G., Kramer D., Bäcklund transformation of Einstein–Maxwell fields, Preprint, Friederich Schiller Universität, Jena, 1991

[7] Matos T., “Subspaces and subgroups in five-dimensional gravity”, Ann. Phys., 46 (1989), 462 | DOI | MR | Zbl

[8] Matos T., Rodríguez G., Becerril R., “Exact solutions of $\operatorname {SL}(N,\mathbb R)$-invariant chiral fields. One- and two- dimensional subspaces”, J. Math. Phys., 33 (1992), 3521 | DOI | MR | Zbl

[9] Matos T., Wiederhold P., “$\operatorname {SL}(4,\mathbb R)$-invariant chiral fields”, Lett. Math. Phys., 27 (1993), 265 | DOI | MR | Zbl