Asymptotics of the solutions to the $N$-particle Kolmogorov-Feller equations and the asymptotics of the solution to the Boltzmann equation in the region of large
Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 694-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a representation in which the asymptotics of the solution to the Kolmogorov–Feller equation in the Fock space $\Gamma\bigl(L_1(\mathbb R^n)\bigr)$ is of a form similar to the WKB asymptotic expansion; namely, the Boltzmann equation in $L_1(\mathbb R^n)$ plays the role of the Hamilton equations, the linearized Boltzmann equation extended to $\Gamma\bigl(L_1(\mathbb R^n)\bigr)$ plays the role of the transport equation, and the Hamilton–Jacobi equation follows from the conservation of the total probability for the solutions of the Boltzmann equation. We also construct the asymptotics of the solution to the Boltzmann equation with small transfer of momentum; this asymptotics is given by the tunnel canonical operator corresponding to the self-consistent characteristic equation.
@article{MZM_1995_58_5_a4,
     author = {V. P. Maslov},
     title = {Asymptotics of the solutions to the $N$-particle {Kolmogorov-Feller} equations and the asymptotics of the solution to the {Boltzmann} equation in the region of large},
     journal = {Matemati\v{c}eskie zametki},
     pages = {694--709},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a4/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Asymptotics of the solutions to the $N$-particle Kolmogorov-Feller equations and the asymptotics of the solution to the Boltzmann equation in the region of large
JO  - Matematičeskie zametki
PY  - 1995
SP  - 694
EP  - 709
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a4/
LA  - ru
ID  - MZM_1995_58_5_a4
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Asymptotics of the solutions to the $N$-particle Kolmogorov-Feller equations and the asymptotics of the solution to the Boltzmann equation in the region of large
%J Matematičeskie zametki
%D 1995
%P 694-709
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a4/
%G ru
%F MZM_1995_58_5_a4
V. P. Maslov. Asymptotics of the solutions to the $N$-particle Kolmogorov-Feller equations and the asymptotics of the solution to the Boltzmann equation in the region of large. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 694-709. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a4/

[1] Maslov V. P., Tariverdiev S. E., “Asimptotika uravneniya Kolmogorova–Fellera dlya sistemy bolshogo chisla chastits”, Itogi nauki i tekhniki. Teoriya veroyatn., matem. statistika, teor. kibern., 19, VINITI, M., 1982, 85–126

[2] Maslov V. P., Chebotarev A. M., “O sluchainykh polyakh, otvechayuschikh tsepochkam Bogolyubova, Vlasova, Boltsmana”, TMF, 54 (1983), 78–88 | MR

[3] Maslov V. P., Shvedov O. Yu., “An asymptotic formula for the $N$-particle density function as $N\to \infty $ and violation of the chaos hypothesis”, Russ. J. Math. Phys., 2:2 (1994), 217–234 | MR | Zbl

[4] Maslov V. P., Shvedov O. Yu., “Spektr $N$-chastichnogo gamiltoniana pri bolshikh $N$ i sverkhtekuchest”, DAN, 335:1 (1994), 42–46 | Zbl

[5] Maslov V. P., Shvedov O. Yu., “Kvantovanie v okrestnosti klassicheskikh reshenii v zadache $N$ chastits i sverkhtekuchest”, TMF, 98:2 (1994), 266–288 | MR | Zbl

[6] Maslov V. P., Shvedov O. Yu., “Statsionarnye asimptoticheskie resheniya zadachi mnogikh tel i vyvod integralnykh uravnenii s prygayuschei nelineinostyu”, Differents. uravneniya, 31:2 (1995), 312–325 | MR

[7] Maslov V. P., Shvedov O. Yu., “Kompleksnyi metod VKB v prostranstve Foka”, DAN, 340:1 (1995), 42–47 | MR | Zbl

[8] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | Zbl

[9] Arsenev A. A., Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992

[10] Tanaka H., “Probabilistic treatment of the Boltzmann equation of Maxwellian molecules”, Z. Wahrshr., 46 (1978), 67–105 | DOI | MR | Zbl

[11] Maslov V. P., Chebotarev A. M., “Klasternye razlozheniya i vtorichnoe kvantovanie”, Tr. MIRAN, 203, Nauka, M., 1994, 135–149 | MR | Zbl

[12] Maslov V. P., “Uravnenie samosoglasovannogo polya”, Itogi nauki i tekhniki. Sovr. probl. matem., 11, VINITI, M., 1978, 153–234 | Zbl

[13] Chebotarev A. M., “Logarifmicheskaya asimptotika resheniya zadachi Koshi dlya uravneniya Boltsmana”, Matem. modelirovanie, 7:12 (1995), 97–106 | MR | Zbl

[14] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Nauka, M., 1988

[15] Fedoryuk M. V., Metod perevala, Nauka, M., 1977