Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_58_5_a12, author = {V. Z. Grines}, title = {On~the topological equivalence of {Morse--Smale} diffeomorphisms with a~finite set of heteroclinic trajectories on irreducible 3-manifolds}, journal = {Matemati\v{c}eskie zametki}, pages = {782--784}, publisher = {mathdoc}, volume = {58}, number = {5}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a12/} }
TY - JOUR AU - V. Z. Grines TI - On~the topological equivalence of Morse--Smale diffeomorphisms with a~finite set of heteroclinic trajectories on irreducible 3-manifolds JO - Matematičeskie zametki PY - 1995 SP - 782 EP - 784 VL - 58 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a12/ LA - ru ID - MZM_1995_58_5_a12 ER -
%0 Journal Article %A V. Z. Grines %T On~the topological equivalence of Morse--Smale diffeomorphisms with a~finite set of heteroclinic trajectories on irreducible 3-manifolds %J Matematičeskie zametki %D 1995 %P 782-784 %V 58 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a12/ %G ru %F MZM_1995_58_5_a12
V. Z. Grines. On~the topological equivalence of Morse--Smale diffeomorphisms with a~finite set of heteroclinic trajectories on irreducible 3-manifolds. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 782-784. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a12/
[1] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. 1; 2”, Metody kachestvennoi teorii dif. uravnenii, Mezhvuz. temat. sb. nauchn. tr., ed. T. A. Lentovich-Andronova, Gorkii, 1985, 22–38; 1987, 24–32 | MR
[2] Bezdenezhnykh A. N., Grines V. Z., Differentsialnye i integralnye uravnenii, Sb. nauchn. tr., ed. N. F. Otrokova, GGU, Gorkii, 1985, 33–37 | MR
[3] Grines V. Z., Matem. zametki, 54:3 (1993), 3–17 | MR | Zbl
[4] Grines V. Z., Kalai Kh. Kh., Matem. zametki, 59:1 (1996), 73–80 | MR | Zbl
[5] Peixoto M., “On the classification of flows on two-manifolds”, Dynamical systems, Proc. Symp. (Univ. of Bahia, Salvador, Brasil, 1971), ed. M. Peixoto, Acad. Press, N. Y.–London, 1973, 389–419 | MR