Geometric minimality conditions for systems of exponentials in $L_p[-\pi,\pi]$
Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 773-777

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof is given of the stability theorem for minimal systems of exponentials $e(\Lambda)=\{e^{i\lambda x}\}_{\lambda\in\Lambda}$ in $L_p[-\pi,\pi]$, where $\Lambda\subset\mathbb C$ is a discrete subset. Geometric minimality conditions for such systems are obtained.
@article{MZM_1995_58_5_a10,
     author = {M. Yu. Yurkin},
     title = {Geometric minimality conditions for systems of exponentials in $L_p[-\pi,\pi]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--777},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a10/}
}
TY  - JOUR
AU  - M. Yu. Yurkin
TI  - Geometric minimality conditions for systems of exponentials in $L_p[-\pi,\pi]$
JO  - Matematičeskie zametki
PY  - 1995
SP  - 773
EP  - 777
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a10/
LA  - ru
ID  - MZM_1995_58_5_a10
ER  - 
%0 Journal Article
%A M. Yu. Yurkin
%T Geometric minimality conditions for systems of exponentials in $L_p[-\pi,\pi]$
%J Matematičeskie zametki
%D 1995
%P 773-777
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a10/
%G ru
%F MZM_1995_58_5_a10
M. Yu. Yurkin. Geometric minimality conditions for systems of exponentials in $L_p[-\pi,\pi]$. Matematičeskie zametki, Tome 58 (1995) no. 5, pp. 773-777. http://geodesic.mathdoc.fr/item/MZM_1995_58_5_a10/