A~construction of complete minimal, but not uniformly minimal, exponential systems with real separable spectrum in $L^p$ and $C$
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 582-595

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct real separable sequences $\{\lambda_n\}$ such that the corresponding systems of exponentials $\exp(i\lambda_nt)$ are complete and minimal, but not uniformly minimal, in the spaces $L^1(-\pi,\pi)$, $L^p(-\pi,\pi)$, $1\le p\infty$, $C[-\pi,\pi]$.
@article{MZM_1995_58_4_a9,
     author = {A. M. Sedletskii},
     title = {A~construction of complete minimal, but not uniformly minimal, exponential systems with real separable spectrum in $L^p$ and $C$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {582--595},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a9/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - A~construction of complete minimal, but not uniformly minimal, exponential systems with real separable spectrum in $L^p$ and $C$
JO  - Matematičeskie zametki
PY  - 1995
SP  - 582
EP  - 595
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a9/
LA  - ru
ID  - MZM_1995_58_4_a9
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T A~construction of complete minimal, but not uniformly minimal, exponential systems with real separable spectrum in $L^p$ and $C$
%J Matematičeskie zametki
%D 1995
%P 582-595
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a9/
%G ru
%F MZM_1995_58_4_a9
A. M. Sedletskii. A~construction of complete minimal, but not uniformly minimal, exponential systems with real separable spectrum in $L^p$ and $C$. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 582-595. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a9/