Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_58_4_a6, author = {E. A. Kalita}, title = {Partial applicability of {Moser's} method to nonlinear elliptic systems}, journal = {Matemati\v{c}eskie zametki}, pages = {547--557}, publisher = {mathdoc}, volume = {58}, number = {4}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a6/} }
E. A. Kalita. Partial applicability of Moser's method to nonlinear elliptic systems. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 547-557. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a6/
[1] Moser Y., “A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl
[2] Koshelev A. I., Regulyarnost reshenii ellipticheskikh uravnenii i sistem, Nauka, M., 1986
[3] Giaquinta M., Necas J., “On the regularity of weak solutions to non linear elliptic systems of partial differential equations”, J. Reine Angew. Math., 316 (1980), 140–159 | MR | Zbl
[4] Kalita E. A., “Regulyarnost reshenii ellipticheskikh sistem vtorogo poryadka”, Izv. vuzov. Matem., 1989, no. 11, 37–46 | MR
[5] Skrypnik I. V,, Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990
[6] Da Prato G., “Spazi ${\frak L}^{(p,\theta )}(\Omega,\delta )$ e loro properieta”, Ann. Math. Pura Appl., 69 (1965), 383–392 | DOI | MR | Zbl