Solution to the lighting problem for zone bodies
Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 505-511.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the class of zone bodies, which includes, in particular, zonoids (and zonohedrons) is introduced. The lighting problem for this class is solved, thus generalizing earlier results for zonohedrons (H. Martini) and zonoids (V. G. Boltyanskii and P. S. Soltan). Namely, it is proved that the boundary of any $n$-dimensional zone body other than a parallelepiped can be lit by $3\cdot2^{n-2}$ pencils of parallel rays or less.
@article{MZM_1995_58_4_a2,
     author = {V. G. Boltyanskii},
     title = {Solution to the lighting problem for zone bodies},
     journal = {Matemati\v{c}eskie zametki},
     pages = {505--511},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a2/}
}
TY  - JOUR
AU  - V. G. Boltyanskii
TI  - Solution to the lighting problem for zone bodies
JO  - Matematičeskie zametki
PY  - 1995
SP  - 505
EP  - 511
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a2/
LA  - ru
ID  - MZM_1995_58_4_a2
ER  - 
%0 Journal Article
%A V. G. Boltyanskii
%T Solution to the lighting problem for zone bodies
%J Matematičeskie zametki
%D 1995
%P 505-511
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a2/
%G ru
%F MZM_1995_58_4_a2
V. G. Boltyanskii. Solution to the lighting problem for zone bodies. Matematičeskie zametki, Tome 58 (1995) no. 4, pp. 505-511. http://geodesic.mathdoc.fr/item/MZM_1995_58_4_a2/

[1] Baladze E. D., “Polnoe reshenie problemy Sekelfalvi–Nadya dlya zonoedrov”, DAN SSSR, 291:2 (1986) | MR

[2] Baladze E. D., “Reshenie problemy Sekefalvi–Nadya dlya zonoidov”, DAN SSSR, 310:1 (1990), 11–14 | MR | Zbl

[3] Martini H., “Some results and problems around Zonotopes”, Colloq. Math. Soc. Bolyai, 48, Institute geometry, Siófok, 1985, 383–418 | MR

[4] Boltyanskii V. G., Soltan P. S., “Reshenie problemy Khadvigera dlya odnogo klassa vypuklykh tel”, DAN SSSR, 313:3 (1990), 528–532 | Zbl

[5] Boltyanski V. G., Soltan P. S., “A solution of Hadwiger's covering problem for zonoids”, Combinatorica, 12:4 (1992), 381–388 | DOI | MR

[6] Boltyanskii V. G., “Zadacha ob osveschenii granitsy vypuklogo tela”, Izv. Mold. filiala AN SSSR, 10:76 (1960), 77–84

[7] Bolker E. D., “A class of convex bodies”, Trans. Amer. Math. Soc., 145 (1969), 323–345 | DOI | MR | Zbl

[8] Gokhberg I. Ts., Markus A. S., “Odna zadacha o pokrytii vypuklykh figur podobnymi”, Izv. Mold. filiala AN SSSR, 10:76 (1960), 87–90

[9] Hadwiger H., “Ungeloste Provlems”, Elemente der Mathematik, 12:20 (1957), 121 | MR

[10] Kharazishvili A. B., “K zadache osvescheniya”, Soobsch. AN GSSR, 71:1 (1973), 289–291 | MR | Zbl

[11] Hadwiger H., “Ungeloste Probleme”, Elemente der Mathematik, 15:38 (1960), 130–131 | MR