Positive orthant scalar controllability of bilinear systems
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 419-424
Voir la notice de l'article provenant de la source Math-Net.Ru
For the bilinear control system $\dot x=(A+uB)x$, $x\in\mathbb R^n$, $u\in\mathbb R$ where $A$ is an $n\times n$ essentially nonnegative matrix, and $B$ is a diagonal matrix, the following controllability problem is investigated: can any two points with positive coordinates be joined by a trajectory of the system? For $n>2$, the answer is negative in the generic case: hypersurfaces in $\mathbb R^n$ are constructed that are intersected by all the trajectories of the system in one direction.
@article{MZM_1995_58_3_a9,
author = {Yu. L. Sachkov},
title = {Positive orthant scalar controllability of bilinear systems},
journal = {Matemati\v{c}eskie zametki},
pages = {419--424},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a9/}
}
Yu. L. Sachkov. Positive orthant scalar controllability of bilinear systems. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 419-424. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a9/