Distribution of values of linear functions and asymptotic behavior of trajectories of some dynamical systems
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 394-410
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic behavior of mean values for integrals of quasiperiodic functions, which characterizes the uniformity of the distribution of irrational windings on a torus, is shown to be essentially dependent on the dimension of the torus. We prove the nonrecurrence of mean values for arbitrarily smooth three-frequency quasiperiodic functions. We also present a series of results concerning the distribution of fractional parts for systems of linear functions.
@article{MZM_1995_58_3_a7,
author = {N. G. Moshchevitin},
title = {Distribution of values of linear functions and asymptotic behavior of trajectories of some dynamical systems},
journal = {Matemati\v{c}eskie zametki},
pages = {394--410},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a7/}
}
TY - JOUR AU - N. G. Moshchevitin TI - Distribution of values of linear functions and asymptotic behavior of trajectories of some dynamical systems JO - Matematičeskie zametki PY - 1995 SP - 394 EP - 410 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a7/ LA - ru ID - MZM_1995_58_3_a7 ER -
N. G. Moshchevitin. Distribution of values of linear functions and asymptotic behavior of trajectories of some dynamical systems. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 394-410. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a7/