Lexicographic optima in the multicriteria discrete optimization problem
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 365-371

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any lexicographic optimum in vector optimization problems on a finite set of admissible solutions can be obtained by a classical technique, the linear convolution of criteria.
@article{MZM_1995_58_3_a4,
     author = {V. A. Emelichev and M. K. Kravtsov},
     title = {Lexicographic optima in the multicriteria discrete optimization problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {365--371},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a4/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - M. K. Kravtsov
TI  - Lexicographic optima in the multicriteria discrete optimization problem
JO  - Matematičeskie zametki
PY  - 1995
SP  - 365
EP  - 371
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a4/
LA  - ru
ID  - MZM_1995_58_3_a4
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A M. K. Kravtsov
%T Lexicographic optima in the multicriteria discrete optimization problem
%J Matematičeskie zametki
%D 1995
%P 365-371
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a4/
%G ru
%F MZM_1995_58_3_a4
V. A. Emelichev; M. K. Kravtsov. Lexicographic optima in the multicriteria discrete optimization problem. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 365-371. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a4/