Uniform polynomial approximation of entire functions on arbitrary compact sets in the complex plane
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 355-364
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arbitrary compact set $K\subset\mathbb C$, we relate the order and the type of an entire function $f$ to the sequence $E_n(f,H)$ of best polynomial approximations to this function on $K$.
@article{MZM_1995_58_3_a3,
author = {A. A. Dovgoshey},
title = {Uniform polynomial approximation of entire functions on arbitrary compact sets in the complex plane},
journal = {Matemati\v{c}eskie zametki},
pages = {355--364},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a3/}
}
TY - JOUR AU - A. A. Dovgoshey TI - Uniform polynomial approximation of entire functions on arbitrary compact sets in the complex plane JO - Matematičeskie zametki PY - 1995 SP - 355 EP - 364 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a3/ LA - ru ID - MZM_1995_58_3_a3 ER -
A. A. Dovgoshey. Uniform polynomial approximation of entire functions on arbitrary compact sets in the complex plane. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 355-364. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a3/