Stochastic approximation of Banach-valued random variables with smooth distributions
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 425-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

A random variable $f$ taking values in a Banach space $E$ is estimated from another Banach-valued variable $g$. The best (with respect to the $L_p$-metrix) estimator is proved to exist in the case of Bochner $p$-integrable variables. For a Hilbert space $E$ and $p=2$, the best estimator is expressed in terms of the conditional expectation and, in the case of jointly Gaussian variables, in terms of the orthoprojection on a certain subspace of $E$. More explicit expressions in terms of surface measures are given for the case in which the underlying probability space is a Hilbert space with a smooth probability measure. The results are applied to the Wiener process to improve earlier estimates given by K. Ritter [4].
@article{MZM_1995_58_3_a10,
     author = {M. O. Smolyanova},
     title = {Stochastic approximation of {Banach-valued} random variables with smooth distributions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {425--444},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a10/}
}
TY  - JOUR
AU  - M. O. Smolyanova
TI  - Stochastic approximation of Banach-valued random variables with smooth distributions
JO  - Matematičeskie zametki
PY  - 1995
SP  - 425
EP  - 444
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a10/
LA  - ru
ID  - MZM_1995_58_3_a10
ER  - 
%0 Journal Article
%A M. O. Smolyanova
%T Stochastic approximation of Banach-valued random variables with smooth distributions
%J Matematičeskie zametki
%D 1995
%P 425-444
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a10/
%G ru
%F MZM_1995_58_3_a10
M. O. Smolyanova. Stochastic approximation of Banach-valued random variables with smooth distributions. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 425-444. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a10/

[1] Loev M., Teoriya veroyatnostei, IL, M., 1962

[2] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, T. 1, Nauka, M., 1970

[3] Traub J. F., Wasilkowski G. W., Woźniakowski H., Information-based complexity, Academic Press, N.-Y., 1988 | Zbl

[4] Ritter K., “Approximation and optimization on the Wiener space”, J. Complexity, 6 (1990), 337–364 | DOI | MR | Zbl

[5] Novak E., Ritter K., Some complexity results for zero finding for univariate functions, Preprint, 1992

[6] Lee D., “Approximation of linear operators on a Wiener space”, Rocky Mount. J. Math., 16 (1986), 641–659 | MR | Zbl

[7] Skorokhod A. V., Integrirovanie na gilbertovom prostranstve, Nauka, M., 1975

[8] Uglanov A. V., “Poverkhnostnye integraly v banakhovom prostranstve”, Matem. sb., 110:2 (1979), 189–217 | MR | Zbl

[9] Burbaki N., Integrirovanie. Vektornye mery, Nauka, M., 1969

[10] Diestel J., Uhl J. J., Vector Measures, AMS, Providence, 1977 | Zbl

[11] Neve Zh., Matematicheskie teorii veroyatnostei, Mir, M., 1969 | Zbl

[12] Bogachev V. I., Smolyanov O. G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, UMN, 45:3 (1990), 1–83 | MR | Zbl

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978

[14] Go Kh.-S., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979