Indecomposable switching graph with the number of vertices $N\log_2N-\frac 94N$
Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 323-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new algorithm for constructing switching graphs with many entries and few internal vertices.
@article{MZM_1995_58_3_a0,
     author = {M. G. Adigeyev},
     title = {Indecomposable switching graph with the number of vertices $N\log_2N-\frac 94N$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--333},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a0/}
}
TY  - JOUR
AU  - M. G. Adigeyev
TI  - Indecomposable switching graph with the number of vertices $N\log_2N-\frac 94N$
JO  - Matematičeskie zametki
PY  - 1995
SP  - 323
EP  - 333
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a0/
LA  - ru
ID  - MZM_1995_58_3_a0
ER  - 
%0 Journal Article
%A M. G. Adigeyev
%T Indecomposable switching graph with the number of vertices $N\log_2N-\frac 94N$
%J Matematičeskie zametki
%D 1995
%P 323-333
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a0/
%G ru
%F MZM_1995_58_3_a0
M. G. Adigeyev. Indecomposable switching graph with the number of vertices $N\log_2N-\frac 94N$. Matematičeskie zametki, Tome 58 (1995) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/MZM_1995_58_3_a0/

[1] Arkhangelskaya A. A., Ershov V. A., Neiman V. I., Avtomaticheskaya kommutatsiya kanalov svyazi, Svyaz, M., 1970

[2] Bassalygo L. A., Grushko I. I., Neiman V. I., “Nekotorye teoremy o strukturakh nerazdelennykh sistem razovoi kommutatsii”, Problemy peredachi inform., 5:2 (1969), 45–52 | MR