Poisson structures associated with algebras of differential operators
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 256-271
Cet article a éte moissonné depuis la source Math-Net.Ru
For differential operators forming an algebra of a certain class that includes algebras of higher derivatives, a Poisson structure is introduced and the first term of the Hochschild spectral sequence is calculated.
@article{MZM_1995_58_2_a7,
author = {O. V. Lychagina},
title = {Poisson structures associated with algebras of differential operators},
journal = {Matemati\v{c}eskie zametki},
pages = {256--271},
year = {1995},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a7/}
}
O. V. Lychagina. Poisson structures associated with algebras of differential operators. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 256-271. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a7/
[1] Lychagina O. V., “Spektralnaya posledovatelnost gomologii Khokhshilda algebry vysshikh differentsirovanii”, Vestn. MGU. Ser. 1. Matem., mekh., 3 (1993), 18–22 | MR
[2] Vinogradov A. M., Krasilschik I. S., Lychagin V. V., Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986
[3] Brylinski J.-L., “A differential complex for Poisson manifolds”, Different. Geometry, 28 (1988), 93–114 | MR | Zbl
[4] Kartan A., Eilenberg S., Gomologicheskaya algebra, Nauka, M., 1960
[5] Hochschild G., Kostant B., Rosenberg A., “Differential forms on regular affine algebras”, Trans. Amer. Math. Soc., 102 (1962), 383–408 | DOI | MR | Zbl