Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 204-217
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a triple Fourier-type integral that represents a solution to the KdV equation linearized on an $N$-soliton potential. Assuming that the parameters of the potential depend on the slow time $t$, we construct an asymptotics of this integral as $\varepsilon\to0$ uniform with respect to $x$, $t$ up to large time $0$.
@article{MZM_1995_58_2_a3,
author = {L. A. Kalyakin},
title = {Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the {KdV} equation},
journal = {Matemati\v{c}eskie zametki},
pages = {204--217},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/}
}
TY - JOUR AU - L. A. Kalyakin TI - Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation JO - Matematičeskie zametki PY - 1995 SP - 204 EP - 217 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/ LA - ru ID - MZM_1995_58_2_a3 ER -
L. A. Kalyakin. Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 204-217. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/