Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 204-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a triple Fourier-type integral that represents a solution to the KdV equation linearized on an $N$-soliton potential. Assuming that the parameters of the potential depend on the slow time $t$, we construct an asymptotics of this integral as $\varepsilon\to0$ uniform with respect to $x$, $t$ up to large time $0$.
@article{MZM_1995_58_2_a3,
     author = {L. A. Kalyakin},
     title = {Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the {KdV} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {204--217},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation
JO  - Matematičeskie zametki
PY  - 1995
SP  - 204
EP  - 217
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/
LA  - ru
ID  - MZM_1995_58_2_a3
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation
%J Matematičeskie zametki
%D 1995
%P 204-217
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/
%G ru
%F MZM_1995_58_2_a3
L. A. Kalyakin. Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 204-217. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/

[1] Keener J. P., Mc-Loughlin D. W., “Solitons under perturbations”, Phys. Rev. A, 16:2 (1977), 777–790 | DOI | MR

[2] Kalyakin L. A., “Vozmuschenie solitona Kortevega–de Friza”, TMF, 92,:1 (1992), 62–76 | MR

[3] Sachs R. L., “A justification of the KdV approximation to first order in the case of $N$-soliton water waves on canal”, SIAM J. Math. Anal., 15:3 (1984), 674–683 | DOI | MR

[4] Khristov E. Kh., “O spektralnykh svoistvakh operatorov, porozhdayuschikh uravneniya tipa KdF”, Diff. uravn., 19:9 (1983), 1548–1557 | MR | Zbl

[5] Sachs R. L., “Completeness of derifatives of sguared Schrödinger eigen-functions and explicit solutions of the linearized KdV equation”, SIAM J. Math. Anal, 14:4 (1983), 674–68 | DOI | MR

[6] Nyuell A., “Obratnoe preobrazovanie rasseyaniya”, Solitony, eds. R. Bullaf, F. Kodri, Mir, M., 1983, 193–269

[7] Karpman V. I., Maslov E. M., “Struktura khvostov, obrazuyuschikhsya pri vozdeistvii vozmuschenii na solitony”, ZhETF, 75:2 (1978), 504–517

[8] Karpman V. I., “Sistema solitonov pod vozdeistviem vozmuschenii i ostsillyatsionnye udarnye volny”, ZhETF, 77:1 (1979), 114–123 | MR

[9] Maslov E. M., “K teorii vozmuschenii dlya solitonov vo vtorom priblizhenii”, TMF, 42:3 (1980), 362 | MR

[10] Maslov V. P., Tsupin V. A., “Neobkhodimye usloviya suschestvovaniya beskonechno uzkikh solitonov v gazovoi dinamike”, DAN SSSR, 246:2 (1979), 298–300 | MR | Zbl

[11] Maslov V. P., Omelyanov G. A., “Asimptoticheskie solitonoobraznye resheniya uravnenii s maloi dispersiei”, UMN, 36:3 (1981), 63–126 | MR | Zbl

[12] Maslov V. P., Omelyanov G. A., “Ob usloviyakh tipa Gyugonio dlya beskonechno uzkikh reshenii uravneniya prostykh voln”, Sib. matem. zhurn., 24:5 (1983), 172–182 | MR | Zbl

[13] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[14] Kalyakin L. A., “Asimptotika odnogo integrala, voznikayuschego v teorii vozmuschenii solitonov KdF”, Matem. zametki, 50:5 (1991), 32–42 | MR | Zbl

[15] Fedoryuk M. V., Asimptotika, integraly i ryady, Nauka, M., 1987

[16] Arkadev V. A., Pogrebkov A. K., Polivanov M. K., “Razlozheniya po kvadratam, simplekticheskie i puassonovy struktury, assotsiirovannye s zadachei Shturma–Liuvillya”, TMF, 72:3 (1987), 323–339 | MR | Zbl

[17] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl