Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 204-217

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a triple Fourier-type integral that represents a solution to the KdV equation linearized on an $N$-soliton potential. Assuming that the parameters of the potential depend on the slow time $t$, we construct an asymptotics of this integral as $\varepsilon\to0$ uniform with respect to $x$, $t$ up to large time $0$.
@article{MZM_1995_58_2_a3,
     author = {L. A. Kalyakin},
     title = {Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the {KdV} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {204--217},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation
JO  - Matematičeskie zametki
PY  - 1995
SP  - 204
EP  - 217
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/
LA  - ru
ID  - MZM_1995_58_2_a3
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation
%J Matematičeskie zametki
%D 1995
%P 204-217
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/
%G ru
%F MZM_1995_58_2_a3
L. A. Kalyakin. Asymptotics of the first correction in the perturbation of the $N$-soliton solution to the KdV equation. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 204-217. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a3/