Factor-powers of finite symmetric groups
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 176-188

Voir la notice de l'article provenant de la source Math-Net.Ru

To a transformation semigroup $(S,M)$ we assign a new semigroup $FP(S)$ called the factor-power of the semigroup $(S,M)$. Then we apply this construction to the symmetric group $S_n$. Some combinatorial properties of the semigroup $FP(S_n)$ are studied; in particular, we investigate its relationship with the semigroup of 2-stochastic matrices of order $n$ and the structure of its idempotents. The idempotents are used in characterizing $FP(S_n)$ as an extremal subsemigroup of the semigroup $B_n$ of all binary relations of an $n$-element set and also in the proof of the fact that $FP(S_n)$ contains almost all elements of $B_n$.
@article{MZM_1995_58_2_a1,
     author = {A. G. Ganyushkin and V. S. Mazorchuk},
     title = {Factor-powers of finite symmetric groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {176--188},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a1/}
}
TY  - JOUR
AU  - A. G. Ganyushkin
AU  - V. S. Mazorchuk
TI  - Factor-powers of finite symmetric groups
JO  - Matematičeskie zametki
PY  - 1995
SP  - 176
EP  - 188
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a1/
LA  - ru
ID  - MZM_1995_58_2_a1
ER  - 
%0 Journal Article
%A A. G. Ganyushkin
%A V. S. Mazorchuk
%T Factor-powers of finite symmetric groups
%J Matematičeskie zametki
%D 1995
%P 176-188
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a1/
%G ru
%F MZM_1995_58_2_a1
A. G. Ganyushkin; V. S. Mazorchuk. Factor-powers of finite symmetric groups. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 176-188. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a1/