Factor-powers of finite symmetric groups
Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 176-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

To a transformation semigroup $(S,M)$ we assign a new semigroup $FP(S)$ called the factor-power of the semigroup $(S,M)$. Then we apply this construction to the symmetric group $S_n$. Some combinatorial properties of the semigroup $FP(S_n)$ are studied; in particular, we investigate its relationship with the semigroup of 2-stochastic matrices of order $n$ and the structure of its idempotents. The idempotents are used in characterizing $FP(S_n)$ as an extremal subsemigroup of the semigroup $B_n$ of all binary relations of an $n$-element set and also in the proof of the fact that $FP(S_n)$ contains almost all elements of $B_n$.
@article{MZM_1995_58_2_a1,
     author = {A. G. Ganyushkin and V. S. Mazorchuk},
     title = {Factor-powers of finite symmetric groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {176--188},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a1/}
}
TY  - JOUR
AU  - A. G. Ganyushkin
AU  - V. S. Mazorchuk
TI  - Factor-powers of finite symmetric groups
JO  - Matematičeskie zametki
PY  - 1995
SP  - 176
EP  - 188
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a1/
LA  - ru
ID  - MZM_1995_58_2_a1
ER  - 
%0 Journal Article
%A A. G. Ganyushkin
%A V. S. Mazorchuk
%T Factor-powers of finite symmetric groups
%J Matematičeskie zametki
%D 1995
%P 176-188
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a1/
%G ru
%F MZM_1995_58_2_a1
A. G. Ganyushkin; V. S. Mazorchuk. Factor-powers of finite symmetric groups. Matematičeskie zametki, Tome 58 (1995) no. 2, pp. 176-188. http://geodesic.mathdoc.fr/item/MZM_1995_58_2_a1/

[1] Ganyushkin A. G., Mazorchuk V. S., “Faktorstepeni i indutsirovannye deistviya polugrupp preobrazovanii”, Tretya mezhdunarodnaya konferentsiya po algebre, Sb. tezisov, Krasnoyarsk, 1993, 83–84

[2] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985

[3] Marshall A., Olkin I., Neravenstva: teoriya i ee primeneniya, Mir, M., 1984

[4] Shain B. M., “O nekotorykh klassakh polugrupp binarnykh otnoshenii”, Sib. matem. zhurn., 6:3 (1965), 616–635 | MR

[5] Ganyushkin O. G., Mazorchuk V. S., “Faktorstepei napivgrup peretvoren”, Dopovidi AN Ukrani, 1993, no. 12, 5–9 | MR

[6] Obschaya algebra, ed. A. A. Skornyakov, Nauka, M., 1991

[7] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | Zbl

[8] Sachkov V. I., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977

[9] Lipski W., Marek W., Analiza kombinatoryczna, PWN, Warszawa, 1986

[10] Stenli R., Perechislitelnaya kombinatorika, Mir, M., 1990

[11] Korshunov A. D., “Osnovnye svoistva sluchainykh grafov s bolshim chislom vershin i reber”, UMN, 40:1 (1985), 107–173 | MR | Zbl