On~the global theory of projective mappings
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 111-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the theory of constant rank projective mappings of compact Riemannian manifolds from the global point of view. We study projective immersions and submersions. As an example of the results, let $f\colon(M,g)\to(N,g')$ be a projective submersion of an $m$-dimensional Riemannian manifold $(M,g)$ onto an $(m-1)$-dimensional Riemannian manifold $(N,g')$. Then $(M,g)$ is locally the Riemannian product of the sheets of two integrable distributions $\operatorname{Ker}f_*$ and $(\operatorname{Ker}f_*)^\bot$ whenever $(M,g)$ is one of the two following types: (a) a complete manifold with $\operatorname{Ric}\geqslant0$ (b) a compact oriented manifold with $\operatorname{Ric}\leqslant0$.
@article{MZM_1995_58_1_a8,
     author = {S. E. Stepanov},
     title = {On~the global theory of projective mappings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {111--118},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a8/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - On~the global theory of projective mappings
JO  - Matematičeskie zametki
PY  - 1995
SP  - 111
EP  - 118
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a8/
LA  - ru
ID  - MZM_1995_58_1_a8
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T On~the global theory of projective mappings
%J Matematičeskie zametki
%D 1995
%P 111-118
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a8/
%G ru
%F MZM_1995_58_1_a8
S. E. Stepanov. On~the global theory of projective mappings. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 111-118. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a8/

[1] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | Zbl

[2] Sinyukova E. N., “O geodezicheskikh otobrazheniyakh nekotorykh spetsialnykh rimanovykh prostranstv”, Matem. zametki, 30:6 (1981), 889–894 | MR | Zbl

[3] Sinyukov N. S., Sinyukova E. N., “O golomorfno proektivnykh otobrazheniyakh spetsialnykh kelerovykh prostranstv”, Matem. zametki, 36:3 (1984), 417–423 | MR | Zbl

[4] Sinyukova E. N., “Nekotorye voprosy teorii geodezicheskikh otobrazhenii rimanovykh prostranstv v tselom”, Tezisy soobschenii IX Vsesoyuznoi geometricheskoi konferentsii, Shtiintsa, Kishinev, 1988, 286–287

[5] Nomizu K., Pinkall U., “On the geometry of projective immersion”, J. Math. Soc. Japan, 41:4 (1989), 607–623 | DOI | MR | Zbl

[6] Podestá F., “Projective submersions”, Bull. Austral. Math. Soc., 43:2 (1991), 251–256 | DOI | MR | Zbl

[7] Har'El Z., “Projective mappings and distortion theorems”, J. Diff. Geometry, 15 (1980), 97–106 | MR | Zbl

[8] Nore T., “Second fundamental form of a map”, Ann. Math. Pur. ed Appl., 1987, no. 146, 281–310 | MR | Zbl

[9] Stepanov S. E., “Rimanovy struktury pochti proizvedeniya i otobrazheniya postoyannogo ranga”, Geometriya i analiz, Kemerovs. un-t, Kemerovo, 1991, 39–41

[10] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[11] Zulanke R., Vintgen P., Differentsialnaya geometriya i rassloeniya, Mir, M., 1975

[12] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985

[13] Yano K., Ishihara S., “Harmonic and relativelly affine mappings”, J. Diff. Geometry, 10 (1975), 501–509 | MR | Zbl

[14] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971

[15] Stepanov S. E., “Ob odnom klasse rimanovykh struktur pochti proizvedeniya”, Izv. VUZov. Matematika, 1989, no. 7, 40–46

[16] Brito F., Walszak P., “Totally geodesic foliations with integrable normal bundles”, Bol. Soc. Bras. Math., 17:1 (1986), 41–46 | DOI | MR | Zbl

[17] Kruchkovich G. I., “Priznaki pochti poluprovodimykh rimanovykh prostranstv”, Trudy seminara po vektorn. i tenzornomu analizu, no. XIII, 1966, 399–406 | Zbl

[18] Besse A., Mnogoobraziya Einshteina, T. 2, Mir, M., 1990