On~the global theory of projective mappings
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 111-118

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the theory of constant rank projective mappings of compact Riemannian manifolds from the global point of view. We study projective immersions and submersions. As an example of the results, let $f\colon(M,g)\to(N,g')$ be a projective submersion of an $m$-dimensional Riemannian manifold $(M,g)$ onto an $(m-1)$-dimensional Riemannian manifold $(N,g')$. Then $(M,g)$ is locally the Riemannian product of the sheets of two integrable distributions $\operatorname{Ker}f_*$ and $(\operatorname{Ker}f_*)^\bot$ whenever $(M,g)$ is one of the two following types: (a) a complete manifold with $\operatorname{Ric}\geqslant0$ (b) a compact oriented manifold with $\operatorname{Ric}\leqslant0$.
@article{MZM_1995_58_1_a8,
     author = {S. E. Stepanov},
     title = {On~the global theory of projective mappings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {111--118},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a8/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - On~the global theory of projective mappings
JO  - Matematičeskie zametki
PY  - 1995
SP  - 111
EP  - 118
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a8/
LA  - ru
ID  - MZM_1995_58_1_a8
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T On~the global theory of projective mappings
%J Matematičeskie zametki
%D 1995
%P 111-118
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a8/
%G ru
%F MZM_1995_58_1_a8
S. E. Stepanov. On~the global theory of projective mappings. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 111-118. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a8/