Two-gap elliptic solutions to integrable nonlinear equations
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 86-97
Voir la notice de l'article provenant de la source Math-Net.Ru
We study spectral surfaces associated with elliptic two-gap solutions to the nonlinear Schrödinger equation (NLS), the Korteweg-de Vries equation (KdV), and the sine-Gordon equation (SG). It is shown that elliptic solutions to the NLS and SG equations, as well as solutions to the KdV equation elliptic with respect to $t$, can be assigned to any hyperelliptic surface of genus 2 that forms a covering over an elliptic surface.
@article{MZM_1995_58_1_a6,
author = {A. O. Smirnov},
title = {Two-gap elliptic solutions to integrable nonlinear equations},
journal = {Matemati\v{c}eskie zametki},
pages = {86--97},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a6/}
}
A. O. Smirnov. Two-gap elliptic solutions to integrable nonlinear equations. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 86-97. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a6/