Two-gap elliptic solutions to integrable nonlinear equations
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 86-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study spectral surfaces associated with elliptic two-gap solutions to the nonlinear Schrödinger equation (NLS), the Korteweg-de Vries equation (KdV), and the sine-Gordon equation (SG). It is shown that elliptic solutions to the NLS and SG equations, as well as solutions to the KdV equation elliptic with respect to $t$, can be assigned to any hyperelliptic surface of genus 2 that forms a covering over an elliptic surface.
@article{MZM_1995_58_1_a6,
     author = {A. O. Smirnov},
     title = {Two-gap elliptic solutions to integrable nonlinear equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {86--97},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a6/}
}
TY  - JOUR
AU  - A. O. Smirnov
TI  - Two-gap elliptic solutions to integrable nonlinear equations
JO  - Matematičeskie zametki
PY  - 1995
SP  - 86
EP  - 97
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a6/
LA  - ru
ID  - MZM_1995_58_1_a6
ER  - 
%0 Journal Article
%A A. O. Smirnov
%T Two-gap elliptic solutions to integrable nonlinear equations
%J Matematičeskie zametki
%D 1995
%P 86-97
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a6/
%G ru
%F MZM_1995_58_1_a6
A. O. Smirnov. Two-gap elliptic solutions to integrable nonlinear equations. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 86-97. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a6/

[1] Dubrovin B. A., Novikov S. P., “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, ZhETF, 67:12 (1974), 2131–2143 | MR

[2] Its A. R., Matveev V. B., “Operator Khilla s konechnym chislom lakun i mnogosolitonnye resheniya uravneniya Kortevega–de Friza”, TMF, 23:1 (1975), 51–64 | MR

[3] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[4] Matveev V. B., Abelian functions and solitons, Preprint No. 373, Univ. of Wrocław, 1976

[5] Its A. R., “Obraschenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenii”, Vestnik LGU. Ser. matem.-mekh.-astr., 7:2 (1976), 39–46 | MR | Zbl

[6] Its A. R., Tochnoe integrirovanie v rimanovykh $\Theta $-funktsiyakh nelineinogo uravneniya Shrëdingera i modifitsirovannogo uravneniya Kortevega–de Friza, Dis. ...kand. fiz.-matem. nauk, LGU, L., 1977

[7] Its A. R., Kotlyarov V. P., “Ob odnom klasse reshenii nelineinogo uravneniya Shrëdingera”, DAN USSR. Ser. A, 11 (1976), 965–968 | MR

[8] Kozel V. A., Kotlyarov V. P., “Pochti-periodicheskie resheniya uravneniya “sine-Gordon””, DAN USSR, ser. A, 10 (1976), 878–881 | MR

[9] Dubrovin B. A., Natanzon S. M., “Veschestvennye dvukhzonnye resheniya uravneniya “sine-Gordon””, Funktsion. analiz i ego pril., 16:1 (1982), 27–43 | MR | Zbl

[10] Smirnov A. O., “Veschestvennye ellipticheskie resheniya uravneniya “sine-Gordon””, Matem. sb., 181:6 (1990), 804–812 | Zbl

[11] Babich M. V., “Veschestvennye konechnozonnye resheniya uravnenii, svyazannykh s uravneniem “sine-Gordon””, Algebra i analiz, 2:3 (1990), 63–77 | MR

[12] Babich M. V., “Gladkost veschestvennykh konechnozonnykh reshenii uravnenii, svyazannykh s uravneniem “sine-Gordon””, Algebra i analiz, 3:1 (1991), 57–66 | MR | Zbl

[13] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[14] Krichever I. M., “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, UMN, 33:4 (1978), 215–216 | MR | Zbl

[15] Smirnov A. O., “Konechnozonnye resheniya abelevoi tsepochki Toda roda 4 i 5 v ellipticheskikh funktsiyakh”, TMF, 78:1 (1989), 11–21 | MR

[16] Belokolos E. D., Bobenko A. I., Matveev V. B., Enolskii V. Z., “Algebrogeometricheskie printsipy superpozitsii konechnozonnykh reshenii integriruemykh nelineinykh uravnenii”, UMN, 41:2 (1986), 3–42 | MR | Zbl

[17] Smirnov A. O., “Ellipticheskie resheniya uravneniya Kortevega–de Friza”, Matem. zametki, 45:6 (1989), 66–73 | MR | Zbl

[18] Verdier J.-L., “New elliptic solitons”, Algebraic Analisys, V. II. Micio Sato Sixtieth Birthday Vol., Academic Press, 1988, 901–910 | MR

[19] Treibich A., “Tangential polinomials and elliptic solitons”, Duke Math. J., 59:3 (1989), 611–627 | DOI | MR | Zbl

[20] Treibich A., Verdier J.-L., “Solitons elliptiques”, Volume en l'honneur du 60${}^{\text {e}}$ anniversaire du prof. A. Grothendieck, Birkhäuser, Boston, 1990

[21] Belokolos E. D., Enolskii V. Z., “Izospektralnye deformatsii ellipticheskikh potentsialov”, UMN, 44:5 (1989), 155–156 | MR | Zbl

[22] Belokolos E. D., Enolskii V. Z., “Ellipticheskie solitony Verde i teoriya reduktsii Veiershtrassa”, Funktsion. analiz i ego pril., 23:1 (1989), 57–58 | MR | Zbl

[23] Smirnov A. O., “Ellipticheskie resheniya integriruemykh nelineinykh uravnenii”, Matem. zametki, 46:5 (1989), 100–102 | MR | Zbl

[24] Taimanov I. A., “Ob ellipticheskikh resheniyakh nelineinykh uravnenii”, TMF, 84:1 (1990), 38–45 | MR | Zbl

[25] Pełka J., Zagrodzi. nski J., “Phenomenological electrodynamics of the Josephson junction”, Physica B, 154 (1989), 125–139 | DOI

[26] Smirnov A. O., “Matrichnyi analog teoremy Appelya i reduktsii mnogomernykh teta-funktsii Rimana”, Matem. sb., 133 (175):3 (7) (1987), 382–391 | Zbl

[27] Cherednik I. V., “Ob usloviyakh veschestvennosti v “konechnozonnom” integrirovanii”, DAN SSSR, 252:5 (1980), 1104–1107 | MR

[28] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[29] Krazer A., Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903