Singular integral operators on complicated contours and pseudodifferential operators
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 67-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the pseudodifferential operator technique to the study of algebras of singular operators on complicated contours. This technique is used to construct a symbolic calculus for the $C^*$-algebra generated by singular integral operators whose coefficients may have singularities of the second kind on complicated contours; the curves forming a node are not required to have a tangent at the node.
@article{MZM_1995_58_1_a5,
     author = {V. S. Rabinovich},
     title = {Singular integral operators on complicated contours and pseudodifferential operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--85},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a5/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Singular integral operators on complicated contours and pseudodifferential operators
JO  - Matematičeskie zametki
PY  - 1995
SP  - 67
EP  - 85
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a5/
LA  - ru
ID  - MZM_1995_58_1_a5
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Singular integral operators on complicated contours and pseudodifferential operators
%J Matematičeskie zametki
%D 1995
%P 67-85
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a5/
%G ru
%F MZM_1995_58_1_a5
V. S. Rabinovich. Singular integral operators on complicated contours and pseudodifferential operators. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 67-85. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a5/

[1] Gohberg I. C., Krupnik N. J., Einführung in die Theorie der eindimensionalen singulären Integraloperatoren, Birkhäuser, Basel, 1979 | Zbl

[2] Krupnik N. J., Banach algebras with symbol and singular integral operators, Birkhäuser, Basel, 1987 | Zbl

[3] Roch S., Silberman B., Algebras of convolution operators and their image in the Calkin algebras, Report Math. 90-05, Karl-Weierstrass Inst. Math. Acad. Wiss. DDR, Berlin, 1990 | Zbl

[4] Bottcher A., Silberman B., Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990

[5] Simonenko I. B., Chin Ngok Min, Lokalnyi printsip v teorii odnomernykh singulyarnykh uravnenii s kusochno-nepreryvnymi koeffitsientami, Rostovskii un-t, 1986

[6] Roch S., Silberman B., “The structure of algebras of singular integral operators”, Journ. Integral Equat. and Appl., 4:3 (1992), 421–442 | DOI | MR | Zbl

[7] Gohberg I., Krupnik N., Spitkovskiy I., “Banach algebras of singular integral operators with piecewise continuous coefficients. General contour and weight”, Journ. Integral Equat. and Appl., 17:3 (1993), 322–337 | DOI | Zbl

[8] Bottcher A., Spitkovskiy I., “Toeplitz Operators with PQC symbols and weighted Hardy spaces”, Jorn. Funct. Anal., 97:1 (1991), 194–214 | DOI | MR

[9] Plamenevskii B. A., Senichkin V. N., “O $C^*$-algebrakh singulyarnykh integralnykh operatorov s razlichnymi koeffitsientami na slozhnom konture”, Izv. VUZov. Matem., 1984, no. 1, 25–33 | MR | Zbl

[10] Rabinovich V. S., “Psevdodifferentsialnye operatory Mellina i singulyarnye integralnye operatory na slozhnykh konturakh s ostsilliruyuschei kasatelnoi”, DAN SSSR, 321:5 (1991), 692–696 | Zbl

[11] Taylor M. E., Pseudodifferential Operators, PUP, Princeton, New Jersey, 1981

[12] Grushin V. V., “Psevdodifferentsialnye operatory v $\mathbf R^n$ s ogranichennymi simvolami”, Funkts. anal. i ego prilozh., 4:3 (1970), 37–50 | MR | Zbl

[13] Rabinovich V. S., “O neterovosti psevdodifferentsialnykh operatorov s simvolami klassa $S^m_{\rho,\delta}$ $(0\leqslant\delta=\rho1)$”, Matem. zametki, 27:3 (1980), 457–467 | MR | Zbl

[14] Beals R., “Characterithation of pseudodifferential operators and applications”, Duke Math. J., 44 (1977), 45–57 | DOI | MR | Zbl

[15] Diksme Zh. S., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974