Means over orbits of multidimensional lattices
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 48-66

Voir la notice de l'article provenant de la source Math-Net.Ru

Two transformation groups of arbitrary multidimensional lattices are constructed. We prove the coincidence of arithmetic means of $q$-th deviations of lattices for the orbits of these transformation groups.
@article{MZM_1995_58_1_a4,
     author = {N. M. Dobrovol'skii},
     title = {Means over orbits of multidimensional lattices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {48--66},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a4/}
}
TY  - JOUR
AU  - N. M. Dobrovol'skii
TI  - Means over orbits of multidimensional lattices
JO  - Matematičeskie zametki
PY  - 1995
SP  - 48
EP  - 66
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a4/
LA  - ru
ID  - MZM_1995_58_1_a4
ER  - 
%0 Journal Article
%A N. M. Dobrovol'skii
%T Means over orbits of multidimensional lattices
%J Matematičeskie zametki
%D 1995
%P 48-66
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a4/
%G ru
%F MZM_1995_58_1_a4
N. M. Dobrovol'skii. Means over orbits of multidimensional lattices. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 48-66. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a4/