Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_58_1_a10, author = {S. M. \`Ertel'}, title = {Distance matrices for points on a~line, on~a~circle, and at the vertices of an $n$-dimensional cube}, journal = {Matemati\v{c}eskie zametki}, pages = {127--138}, publisher = {mathdoc}, volume = {58}, number = {1}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a10/} }
TY - JOUR AU - S. M. Èrtel' TI - Distance matrices for points on a~line, on~a~circle, and at the vertices of an $n$-dimensional cube JO - Matematičeskie zametki PY - 1995 SP - 127 EP - 138 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a10/ LA - ru ID - MZM_1995_58_1_a10 ER -
S. M. Èrtel'. Distance matrices for points on a~line, on~a~circle, and at the vertices of an $n$-dimensional cube. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 127-138. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a10/
[1] Babaliev A. M., “Ob odnom metode interpolirovaniya funktsii mnogikh nezavisimykh peremennykh”, Mashinnaya grafika i ee primenenie, VTs SO AN SSSR, Novosibirsk, 1973
[2] Micchelli C. A., “Interpolation of scattered data: Distance matrices and conditionally positive definite functions”, Constr. Approx., 2 (1986), 11–22 | DOI | MR | Zbl
[3] Marcus M., Smith T. R., “A note on the derminants and eigenvalues of distance matrices”, Linear and Multilinear Algebra, 25 (1989), 219–230 | DOI | MR | Zbl
[4] Adamar Zh., Elementarnaya geometriya. Ch. 2. Stereometriya, M., 1938