On~a~problem of Zambakhidze--Smirnov
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We say that the action extension problem is solvable for a bicompact group $G$ if for any metric $G$-space $\mathbb X$ and for any topological embedding $c$ of the orbit space $X$ into a metric space $Y$ there exist a $G$-space $\mathbb Z$, an invariant topological embedding $b\colon X\to\mathbb Z$, and a homeomorphism $h\colon Y\to Z$ such that the diagram $$
@article{MZM_1995_58_1_a0,
     author = {S. M. Ageev},
     title = {On~a~problem of {Zambakhidze--Smirnov}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - On~a~problem of Zambakhidze--Smirnov
JO  - Matematičeskie zametki
PY  - 1995
SP  - 3
EP  - 11
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a0/
LA  - ru
ID  - MZM_1995_58_1_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%T On~a~problem of Zambakhidze--Smirnov
%J Matematičeskie zametki
%D 1995
%P 3-11
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a0/
%G ru
%F MZM_1995_58_1_a0
S. M. Ageev. On~a~problem of Zambakhidze--Smirnov. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a0/

[1] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | Zbl

[2] Ageev S. M., “O prodolzhenii deistviya”, Vestn. MGU. Ser. 1, 1992, no. 5, 20–23 | MR | Zbl

[3] Antonyan S. A., “Ob odnoi zadache L. G. Zambakhidze”, UMN, 41:5 (1986), 153–154 | MR

[4] Engelking R., Obschaya topologiya, Mir, M., 1986

[5] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973