On~a~problem of Zambakhidze--Smirnov
Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
We say that the action extension problem is solvable for a bicompact group $G$ if for any metric $G$-space $\mathbb X$ and for any topological embedding $c$ of the orbit space $X$ into a metric space $Y$ there exist a $G$-space $\mathbb Z$, an invariant topological embedding $b\colon X\to\mathbb Z$, and a homeomorphism $h\colon Y\to Z$ such that the diagram
$$
@article{MZM_1995_58_1_a0,
author = {S. M. Ageev},
title = {On~a~problem of {Zambakhidze--Smirnov}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--11},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a0/}
}
S. M. Ageev. On~a~problem of Zambakhidze--Smirnov. Matematičeskie zametki, Tome 58 (1995) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_1995_58_1_a0/