Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_6_a6, author = {E. V. Radkevich and B. O. \`Etonkulov}, title = {On~the existence of classical solutions of the problem on~swelling of glassy polymers}, journal = {Matemati\v{c}eskie zametki}, pages = {875--888}, publisher = {mathdoc}, volume = {57}, number = {6}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_6_a6/} }
TY - JOUR AU - E. V. Radkevich AU - B. O. Ètonkulov TI - On~the existence of classical solutions of the problem on~swelling of glassy polymers JO - Matematičeskie zametki PY - 1995 SP - 875 EP - 888 VL - 57 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_57_6_a6/ LA - ru ID - MZM_1995_57_6_a6 ER -
E. V. Radkevich; B. O. Ètonkulov. On~the existence of classical solutions of the problem on~swelling of glassy polymers. Matematičeskie zametki, Tome 57 (1995) no. 6, pp. 875-888. http://geodesic.mathdoc.fr/item/MZM_1995_57_6_a6/
[1] Astarita G., Sarti G. C., “A class of mathematical models for sorption of swelling solvents into glassy polymers”, Polymer Eng. Sci., 18 (1987), 388–395
[2] Radkevich E. V., “Ob usloviyakh suschestvovaniya klassicheskogo resheniya modifitsirovannoi zadachi Stefana (zakon Gibbsa–Tomsona)”, Matem. sb., 183:2 (1992), 77–101 | MR | Zbl
[3] Ei-Ichi Hanzawa, “Classical solutions of the Stefan problem”, Tôhoku Math. J., 33:3 (1981), 297–335 | DOI | MR
[4] Nirenberg L., The lectures of Nonlinear operators, New York, 1974
[5] Radkevich E. V., Melikulov A. S., Zadachi so svobodnoi granitsei, FAN, Tashkent, 1991 | Zbl
[6] Radkevich E. V., Melikulov A. S., Kraevye zadachi so svobodnoi granitsei, FAN, Tashkent, 1988 | Zbl
[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[8] Andreucci D., Ricci R., “A free boundary problem arising from sorption of solvents in glassy polymers”, Quarterly of applied mathematics, XLIV:4 (1987), 649–657 | MR