Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_6_a0, author = {A. D. Bruno and S. Yu. Sadov}, title = {Formal integral of a~divergence-free system}, journal = {Matemati\v{c}eskie zametki}, pages = {803--813}, publisher = {mathdoc}, volume = {57}, number = {6}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_6_a0/} }
A. D. Bruno; S. Yu. Sadov. Formal integral of a~divergence-free system. Matematičeskie zametki, Tome 57 (1995) no. 6, pp. 803-813. http://geodesic.mathdoc.fr/item/MZM_1995_57_6_a0/
[1] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979
[2] Sadov S. Yu., “O dinamicheskoi sisteme, voznikshei iz odnoi konechnomernoi approksimatsii uravneniya Shredingera”, Matem. zametki, 56:3 (1994), 118–133 | MR | Zbl
[3] Broer H., Bifurcation of Singularities in Volume Preserving Vector Fields, Dissertation, Groningen, 1979
[4] Broer H., “Formal normal form theorems for vector fields and consequences for bifurcation in the volume preserving case”, Dynamical Systems and Turbulence, Springer Lecture Notes in Math., 898, eds. D. A. Rand, L. S. Young, 1981, 54–74 | MR | Zbl
[5] Kurosh A. G., Teoriya grupp, 2-e izd., Gostekhizdat, M., 1953