Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_5_a11, author = {N. M. Timofeev}, title = {The {Hardy--Ramanujan} and {Halasz} inequalities for shifted primes}, journal = {Matemati\v{c}eskie zametki}, pages = {747--764}, publisher = {mathdoc}, volume = {57}, number = {5}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_5_a11/} }
N. M. Timofeev. The Hardy--Ramanujan and Halasz inequalities for shifted primes. Matematičeskie zametki, Tome 57 (1995) no. 5, pp. 747-764. http://geodesic.mathdoc.fr/item/MZM_1995_57_5_a11/
[1] Hardy G. H., Ramanujan S., “The normal number of prime factors of a number $n$”, J. Math., 48 (1917), 76–92
[2] Sathe L. G., “On a problem of Hardy of the distribution of integers having a given number of prime factors”, J. Indian Math. Soc., 18 (1954), 27–81 | MR
[3] Selberg A., “Note an a paper by L. G. Sathe”, J. Indian Math. Soc., 18 (1954), 83–87 | MR | Zbl
[4] Halasz G., “Remarks to my paper “On the distribution of additive and the mean values of multiplicative arithmetic functions””, Acta Math. Acad. Sci. Hungar., 23 (1972), 425–432 | DOI | MR | Zbl
[5] Norton K. K., “On the number of restricted prime factors of an integer, I”, Illinois J. Math., 20 (1976), 681–705 | MR | Zbl
[6] Sarközy A., “Remarks on a paper of G. Halasz”, Periodica Math. Hungar., 8 (2) (1977), 135–150 | DOI | MR | Zbl
[7] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967
[8] Timofeev N. M., “Gipoteza Erdesha–Kubilyusa o raspredelenii znachenii additivnykh funktsii na posledovatelnosti sdvinutykh prostykh chisel”, Acta Arithm., LVIII:2 (1991), 113–131
[9] Halberstam H., Richert H.-E., Sieve Methods, Academic Pres, 1974
[10] Levin B. V., Timofeev N. M., “Raspredelenie arifmeticheskikh funktsii v srednem po progressiyam (teoremy tipa Vinogradova–Bomberi)”, Matem. sb., 125 (167):4 (1984), 558–572 | MR | Zbl
[11] Nicolas J. L., “Sur la distribution des numbers entiere ayant quantité fixee de facteurs premiers”, Acta Arithm., XLIV (1984), 191–200 | MR