On~reflection formulas for higher-order elliptic equations
Matematičeskie zametki, Tome 57 (1995) no. 5, pp. 732-746.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1995_57_5_a10,
     author = {T. V. Savina},
     title = {On~reflection formulas for higher-order elliptic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {732--746},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_5_a10/}
}
TY  - JOUR
AU  - T. V. Savina
TI  - On~reflection formulas for higher-order elliptic equations
JO  - Matematičeskie zametki
PY  - 1995
SP  - 732
EP  - 746
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_57_5_a10/
LA  - ru
ID  - MZM_1995_57_5_a10
ER  - 
%0 Journal Article
%A T. V. Savina
%T On~reflection formulas for higher-order elliptic equations
%J Matematičeskie zametki
%D 1995
%P 732-746
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_57_5_a10/
%G ru
%F MZM_1995_57_5_a10
T. V. Savina. On~reflection formulas for higher-order elliptic equations. Matematičeskie zametki, Tome 57 (1995) no. 5, pp. 732-746. http://geodesic.mathdoc.fr/item/MZM_1995_57_5_a10/

[1] Sternin B. Yu., Shatalov V. E., “Continuation of solutions to elliptic equations and localization of singularities”, Springer Lect. Notes in Math., 1520, 1992, 237–260 | MR

[2] Schwartz H. A., “Über die integration der partiellen differentialgleichung $\frac {\partial ^2}{\partial x^2}+\frac {\partial ^2u}{\partial y^2}=0$ unter vorgeschribenen Grentz- und unstetigkeitsbedingungen”, Monatsber. der Königl. Acad. der Wiss., Berlin, 1870, 767–795

[3] Khavinson D., Shapiro H. S., “Remarks on the reflection principle for harmonic functions”, J. d$'$analise mathematique, 54 (1990), 60–76 | DOI | MR | Zbl

[4] Garabedian P., “Partial differential equations with more than two independant variables in the complex domain”, J. Math. Mech., 9:2 (1960), 241–271 | MR | Zbl

[5] Savina T. V., Sternin B. Yu., Shatalov V. E., “O zakone otrazheniya dlya uravneniya Gelmgoltsa”, DAN, 322:1 (1992), 48–51 | MR | Zbl

[6] Lions J.-L., Magenes E., Problèms aux Limites non Homogènes et Applications, V. 1, Dunod, Paris, 1968 | Zbl

[7] John F., “The fundamental solution of linear elliptic differential equations with analytic coefficients”, Comm. Pure and Appl. Math., 2 (1950), 273–304 | DOI

[8] Ion F., Ploskie volny i sfericheskie srednie, IL, M., 1958

[9] Ludwig D., “Exact and asymptotics solutions of the Cauchy problem”, Comm. Pure and Appl. Math., 13 (1960), 473–508 | DOI | MR | Zbl

[10] Vekua I. N., Novye metody resheniya ellipticheski uravnenii, Gostekhizdat, M.–L., 1948

[11] Savina T. V., Sternin B. Yu., Shatalov V. E., “O formule otrazheniya dlya uravneniya Gelmgoltsa”, Radiotekhnika i elektronika, 38:2 (1993), 229–240