Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_4_a4, author = {K. \`E. Kaibkhanov}, title = {On~Banach spaces, nonisomorphic to their {Cartesian} squares}, journal = {Matemati\v{c}eskie zametki}, pages = {534--541}, publisher = {mathdoc}, volume = {57}, number = {4}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_4_a4/} }
K. È. Kaibkhanov. On~Banach spaces, nonisomorphic to their Cartesian squares. Matematičeskie zametki, Tome 57 (1995) no. 4, pp. 534-541. http://geodesic.mathdoc.fr/item/MZM_1995_57_4_a4/
[1] Bessaga C., Pelczynski A., “Banach spaces non-isomorphic to their Cartesian squares, I”, Bull. Acad. Pol. Sci., 8:2 (1960), 77–80 | MR | Zbl
[2] Semadeni Z., “Banach spaces non-isomorphic to their Cartesian squares, II”, Bull. Acad. Pol. Sci., 8:2 (1960), 81–86 | MR
[3] Figiel T., “An example of infinite dimensional Banach space non-isomorphic to its Cartesian square”, Studia Math., 42:3 (1972), 295–306 | MR | Zbl
[4] Szarek S., “A superreflexive Banach space which does not admit complex structure”, Proc. Amer. Math. Soc., 97:3 (1986), 437–444 | DOI | MR | Zbl
[5] Figiel T., Lindenstrauss J., Milman V. D., “The dimension of almost spherical sections of convex bodies”, Acta Math., 139:1–2 (1977), 53–94 | DOI | MR | Zbl
[6] Lindenstrauss J., Tzafriri L., Classical Banach spaces, V. II, Springer, Berlin, 1979 | Zbl
[7] Kadets V. M., Kaibkhanov K. E., “O strukture mnozhestva dopustimykh vozmuschenii”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 53, Kharkov, 1990, 79–87
[8] Kwapien S., “Isomorphic characterization of inner product spaces by orthogonal series with vector valued coefficients”, Studia Math., 44 (1972), 583–595 | MR | Zbl