On~comparison theorems
Matematičeskie zametki, Tome 57 (1995) no. 4, pp. 606-624.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1995_57_4_a10,
     author = {V. V. Filippov},
     title = {On~comparison theorems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {606--624},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_4_a10/}
}
TY  - JOUR
AU  - V. V. Filippov
TI  - On~comparison theorems
JO  - Matematičeskie zametki
PY  - 1995
SP  - 606
EP  - 624
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_57_4_a10/
LA  - ru
ID  - MZM_1995_57_4_a10
ER  - 
%0 Journal Article
%A V. V. Filippov
%T On~comparison theorems
%J Matematičeskie zametki
%D 1995
%P 606-624
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_57_4_a10/
%G ru
%F MZM_1995_57_4_a10
V. V. Filippov. On~comparison theorems. Matematičeskie zametki, Tome 57 (1995) no. 4, pp. 606-624. http://geodesic.mathdoc.fr/item/MZM_1995_57_4_a10/

[1] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | Zbl

[2] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980

[3] Voronov A. A., Matrosov V. M. i dr., Metod vektornykh funktsii Lyapunova v teorii ustoichivosti, Nauka, M., 1987

[4] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | Zbl

[5] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985

[6] Filippov V. V., “Ob obyknovennykh differentsialnykh uravneniyakh s osobennostyami v pravoi chasti”, Matem. zametki, 38:6 (1985), 832–851 | MR | Zbl

[7] Filippov V. V., “Aksiomaticheskaya teoriya prostranstv reshenii obyknovennykh differentsialnykh uravnenii”, DAN SSSR, 280:2 (1985), 304–308 | MR | Zbl

[8] Filippov V. V., “K teorii prostranstv reshenii obyknovennykh differentsialnykh uravnenii”, DAN SSSR, 285:5 (1985), 1073–1077 | MR | Zbl

[9] Filippov V. V., “Dva zamechaniya k teorii prostranstv reshenii obyknovennykh differentsialnykh uravnenii”, Vestn. MGU. Ser. 1. Matem., mekh., 1988, no. 4, 53–55

[10] Filippov V. V., “Teoriya zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya s tochki zreniya obschei topologii”, Obschaya topologiya. Otobrazheniya topologicheskikh prostranstv, Izd-vo MGU, M., 1988 | Zbl

[11] Filippov V. V., “Ob asimptoticheskom integrirovanii obyknovennykh differentsialnykh uravnenii s razryvami v pravoi chasti”, DAN SSSR, 321:3 (1991), 482–485 | Zbl

[12] Filippov V. V., “O statsionarnykh tochkakh i nekotorykh geometricheskikh svoistvakh reshenii obyknovennykh differentsialnykh uravnenii”, DAN SSSR, 323:6 (1992), 1043–1047 | Zbl

[13] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl

[14] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh yravnenii, IL, M., 1949

[15] Davy J. L., “Properties of solution set of a generalized differentional equation”, Bull. Austral. Math. Soc., 6:3 (1972), 379–398 | DOI | MR | Zbl

[16] Filippov V. V., “O teoreme Luzina i pravykh chastyakh differentsialnykh vklyuchenii”, Matem. zametki, 37:1 (1985), 93–98 | Zbl

[17] Scorza-Dragoni G., “Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile”, Rend. Semin. mat. Univ. Padova, 17 (1948), 102–106 | MR | Zbl

[18] Filippov V. V., “O teoremakh Luzina i Skortsa–Dragoni”, Vestn. MGU. Ser. 1. Matem., mekh., 1987, no. 3, 66–68 | Zbl

[19] “Ricceri B., Villani A.”, Matematische, 37:1 (1982), 156–161 | MR | Zbl

[20] Scorca-Dragoni G., “Una applicatione della quasi continuittá semiregolare delle funzioni misurabili rispetto ad una e continue rispetto ad un'altra variabile”, Atti Acad. Naz. Lincei, Ser. 8, classe fis., mat., 12:1 (1952), 55–61 | MR

[21] Opial Z., “Sur l'equation différentielle ordinaire du premier ordre dont le second membre satisfait aux condition de Caratheodory”, Ann. polon. math., 8:1 (1960), 23–28 | MR | Zbl