Asymptotic behavior of periodic solutions of parabolic equations with weakly nonlinear perturbation
Matematičeskie zametki, Tome 57 (1995) no. 3, pp. 369-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1995_57_3_a5,
     author = {M. Yu. Kokurin},
     title = {Asymptotic behavior of periodic solutions of parabolic equations with weakly nonlinear perturbation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {369--376},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_3_a5/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Asymptotic behavior of periodic solutions of parabolic equations with weakly nonlinear perturbation
JO  - Matematičeskie zametki
PY  - 1995
SP  - 369
EP  - 376
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_57_3_a5/
LA  - ru
ID  - MZM_1995_57_3_a5
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Asymptotic behavior of periodic solutions of parabolic equations with weakly nonlinear perturbation
%J Matematičeskie zametki
%D 1995
%P 369-376
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_57_3_a5/
%G ru
%F MZM_1995_57_3_a5
M. Yu. Kokurin. Asymptotic behavior of periodic solutions of parabolic equations with weakly nonlinear perturbation. Matematičeskie zametki, Tome 57 (1995) no. 3, pp. 369-376. http://geodesic.mathdoc.fr/item/MZM_1995_57_3_a5/

[1] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[2] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[3] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990

[4] Klimov V. S., “K zadache o periodicheskikh resheniyakh operatornykh differentsialnykh vklyuchenii”, Izv. AN SSSR. Ser. Mat., 53:2 (1989), 309–327 | MR

[5] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974

[6] Bakhvalov N. S., Panasenko G. P., Shtaras A. L., “Metod osredneniya dlya uravneniya s chastnymi proizvodnymi i ego primeneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, VINITI, M., 1988, 215–240 | MR

[7] Karchevskii M. M., Lyashko A. D., Pavlova M. F., “O raznostnykh skhemakh dlya uravnenii nestatsionarnoi nelineinoi filtratsii”, Differents. uravneniya, 15:9 (1979), 1692–1706 | MR

[8] Alber Ya. I., “O reshenii nelineinykh uravnenii s monotonnymi operatorami v banakhovom prostranstve”, Sib. matem. zhurn., 16:1 (1975), 3–11 | MR | Zbl

[9] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989

[10] Maslov V. P., “Suschestvovanie resheniya nekorrektnoi zadachi ekvivalentno skhodimosti regulyarizatsionnogo protsessa”, UMN, 23:3 (1968), 183–184 | MR | Zbl

[11] Domanskii E. N., “O nepreryvnoi regulyarizuemosti po Maslovu nekorrektnykh zadach”, DAN SSSR, 321:2 (1991), 246–249 | Zbl

[12] Liskovets O. A., Variatsionnye metody resheniya neustoichivykh zadach, Nauka i tekhnika, Minsk, 1981 | Zbl

[13] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988

[14] Rockafellar R. T., “Convexity properties of nonlinear maximal monotone operators”, Bull. Amer. Math. Soc., 75 (1969), 74–77 | DOI | MR | Zbl

[15] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981

[16] Reich S., “On the asymptotic behavior of nonlinear semigroups and the range of accretive operators”, J. Math. Anal. and Appl., 87:1 (1982), 134–146 | DOI | MR | Zbl

[17] Kokurin M. Yu., “Ob ispolzovanii regulyarizatsii dlya korrektsii monotonnykh variatsionnykh neravenstv, zadannykh priblizhenno”, Izv. vuzov. Matematika, 1992, no. 2, 49–56 | MR | Zbl

[18] Kokurin M. Yu., “Ob asimptoticheskom povedenii periodicheskikh reshenii odnogo klassa operatornykh differentsialnykh uravnenii”, Differents. uravneniya, 29:8 (1993), 1400–1407 | MR | Zbl