Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_2_a9, author = {N. N. Savel'ev}, title = {Noncompact {Taubes} projection}, journal = {Matemati\v{c}eskie zametki}, pages = {265--277}, publisher = {mathdoc}, volume = {57}, number = {2}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a9/} }
N. N. Savel'ev. Noncompact Taubes projection. Matematičeskie zametki, Tome 57 (1995) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a9/
[1] Donaldson S. K., Floer homology groups in Jang–Mills theory, Preprint, 1989
[2] Donaldson S. K., “Connections, cohomology and the intersection forms on 4-manifolds”, J. Diff. Geom., 24:3 (1986), 275–341 | MR | Zbl
[3] Lockhart R., McOwen R., “Elliptic operators on non-compact manifolds”, Ann. Scuola Norm. Sup. Pisa. IV, 12:3 (1985), 409–446 | MR
[4] Floer A., “An instanton-invariant for 3-manifolds”, Comm. Math. Ph., 118:2 (1988), 215–240 | DOI | MR | Zbl
[5] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988
[6] Mazya V. G., Plamenevskii B. A., “Otsenki v $L^p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | MR | Zbl
[7] Uhlenbeck K., “Removable singularities in Jang–Mills fields”, Comm. Math. Ph., 83:1 (1982), 11–29 | DOI | MR | Zbl