Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_2_a6, author = {A. V. Domrin}, title = {The number of $\mathbb R\mathbb C$-singular points on a~4-dimensional real submanifold in a~5-dimensional complex manifold}, journal = {Matemati\v{c}eskie zametki}, pages = {240--245}, publisher = {mathdoc}, volume = {57}, number = {2}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a6/} }
TY - JOUR AU - A. V. Domrin TI - The number of $\mathbb R\mathbb C$-singular points on a~4-dimensional real submanifold in a~5-dimensional complex manifold JO - Matematičeskie zametki PY - 1995 SP - 240 EP - 245 VL - 57 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a6/ LA - ru ID - MZM_1995_57_2_a6 ER -
%0 Journal Article %A A. V. Domrin %T The number of $\mathbb R\mathbb C$-singular points on a~4-dimensional real submanifold in a~5-dimensional complex manifold %J Matematičeskie zametki %D 1995 %P 240-245 %V 57 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a6/ %G ru %F MZM_1995_57_2_a6
A. V. Domrin. The number of $\mathbb R\mathbb C$-singular points on a~4-dimensional real submanifold in a~5-dimensional complex manifold. Matematičeskie zametki, Tome 57 (1995) no. 2, pp. 240-245. http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a6/
[1] Lai H.-F., “Characteristic classes of real submanifolds immersed in complex manifolds”, Trans. AMS, 172 (1972), 1–33 | DOI | MR
[2] Bishop E., “Differentiable manifolds in complex Euclidean space”, Duke Math. J., 32:1 (1965), 1–21 | DOI | MR | Zbl
[3] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970
[4] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989
[5] Gromov M. L., “Vypukloe integrirovanie differentsialnykh sootnoshenii”, Izv. AN SSSR. Ser. matem., 37:2 (1973), 329–343 | MR | Zbl
[6] Khirsh M., Differentsialnaya topologiya, Mir, M., 1980