Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_2_a2, author = {M. I. Vishik and V. V. Chepyzhov}, title = {Attractors of periodic processes and estimates of their dimension}, journal = {Matemati\v{c}eskie zametki}, pages = {181--202}, publisher = {mathdoc}, volume = {57}, number = {2}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a2/} }
M. I. Vishik; V. V. Chepyzhov. Attractors of periodic processes and estimates of their dimension. Matematičeskie zametki, Tome 57 (1995) no. 2, pp. 181-202. http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a2/
[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | Zbl
[2] Hale J. K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, A.M.S., Providence, RI, 1987
[3] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, 1988
[4] Ghidaghlia J. M., Temam R., “Attractors for damped nonlinear hyperbolic equations”, J. Math. Pures Appl., 66 (1987), 273–319 | MR
[5] Haraux A., Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Preprint R87031, Université Pierre et Marie Curie, Centre National de la Recherche Scietifique, 1987
[6] Haraux A., Systèmes dinamiques dissipatifs et applications, Masson, Paris–Milan–Barcelona–Rome, 1991
[7] Chepyzhov V. V., Vishik M. I., “Attractors of non-autonomous dynamical systems and their dimension”, J. Math. Pures Appl., 73:3 (1994), 279–333 | MR | Zbl
[8] Chepyzhov V. V., Vishik M. I., “Non-autonomous dynamical systems and their attractors”, Appendix in the book: M. I. Vishik, Asymptotic behavior of solutions of evolutionary equations, Cambridge University Press, 1992
[9] Chepyzhov V. V., Vishik M. I., “Non-autonomous evolution equations and their attractors”, Russ. J. Math. Physics, 1:2 (1993), 165–190 | MR | Zbl
[10] Chepyzhov V. V., Vishik M. I., “A Hausdorff dimension estimates for kernel sections of non-autonomous evolution equations”, Indiana Univ. Math. J., 42:3 (1993), 1057–1076 | DOI | MR | Zbl
[11] Ladyzhenskaya O. F., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970
[12] Temam R., On the theory and numerical analysis of the Navier–Stokes equations, Springer-Verlag, 1974
[13] Babin A. V., Vishik M. I., “Attraktory evolyutsionnykh uravnenii s chastnymi proizvodnymi i otsenki ikh razmernostei”, UMN, 38:4 (1983), 133–187 | MR | Zbl
[14] Chepyzhov V. V., Vishik M. I., Periodic processes and non-autonomous evolution equations with time-periodic terms, Volume in Honour of J. Leray, 1994
[15] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gautier-Villars, Paris, 1969 | Zbl
[16] Dafermos C. M., “Almost periodic processes and almost periodic solutions of evolutional equations”, Proc. of a University of Florida International Symposium, Academic Press, New-York, 1977, 43–57 | MR
[17] LaSalle, “Stability Theory and invariance principles”, Dynamical systems, V. 1, Academic Press, 1976, 211–222
[18] Sell G. R., “Non-autonomous differential equations and topological dynamics. I; II”, Amer. Math. Soc., 127 (1967), 241–262 ; 263–283 | DOI | MR | Zbl