On~the number of solutions of the equation $x_1^2+\dots+x_n^2=nx_1\dots x_n$, not exceeding a~given limit
Matematičeskie zametki, Tome 57 (1995) no. 2, pp. 297-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1995_57_2_a12,
     author = {Yu. N. Baulina},
     title = {On~the number of solutions of the equation $x_1^2+\dots+x_n^2=nx_1\dots x_n$, not exceeding a~given limit},
     journal = {Matemati\v{c}eskie zametki},
     pages = {297--300},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a12/}
}
TY  - JOUR
AU  - Yu. N. Baulina
TI  - On~the number of solutions of the equation $x_1^2+\dots+x_n^2=nx_1\dots x_n$, not exceeding a~given limit
JO  - Matematičeskie zametki
PY  - 1995
SP  - 297
EP  - 300
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a12/
LA  - ru
ID  - MZM_1995_57_2_a12
ER  - 
%0 Journal Article
%A Yu. N. Baulina
%T On~the number of solutions of the equation $x_1^2+\dots+x_n^2=nx_1\dots x_n$, not exceeding a~given limit
%J Matematičeskie zametki
%D 1995
%P 297-300
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a12/
%G ru
%F MZM_1995_57_2_a12
Yu. N. Baulina. On~the number of solutions of the equation $x_1^2+\dots+x_n^2=nx_1\dots x_n$, not exceeding a~given limit. Matematičeskie zametki, Tome 57 (1995) no. 2, pp. 297-300. http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a12/

[1] Hurwitz A., Archiv der Math. und Phys. (3), 11 (1907), 185–195

[2] Zagier D., Math. Comput., 39:160 (1982), 709–723 | DOI | MR | Zbl