Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_2_a1, author = {S. A. Aiunts}, title = {Chebyshev and {Zolotarev} perfect convolution $K$-splines and optimal $K$-extrapolation}, journal = {Matemati\v{c}eskie zametki}, pages = {171--180}, publisher = {mathdoc}, volume = {57}, number = {2}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a1/} }
S. A. Aiunts. Chebyshev and Zolotarev perfect convolution $K$-splines and optimal $K$-extrapolation. Matematičeskie zametki, Tome 57 (1995) no. 2, pp. 171-180. http://geodesic.mathdoc.fr/item/MZM_1995_57_2_a1/
[1] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976
[2] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya gladkikh funktsii v prostranstve $C\bigl ([-1,1]\bigr )$”, Matem. sb., 80:2 (1969), 290–304 | MR | Zbl
[3] Karlin S., “Oscillatory perfect splines and related extremal problems”, Spline Functions and Approximation Theory, eds. S. Karlin, S. A. Micchelli, A. Pinkus, I. J. Schoenberg, Acad. Press, New York, 1976, 371–400 | MR
[4] Aiunts S. A., “Ob odnoi ekstremalnoi zadache, svyazannoi s uravneniem teploprovodnosti”, Ekstremalnye zadachi, funktsionalnyi analiz i ikh prilozheniya, Izd-vo MGU, M., 1988, 3–5
[5] Pinkus A., $n$-widths in approximation theory, Springer, Berlin, 1985
[6] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1964