Finite fundamental groups of three-dimensional manifolds
Matematičeskie zametki, Tome 57 (1995) no. 1, pp. 105-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1995_57_1_a8,
     author = {E. G. Mennike},
     title = {Finite fundamental groups of three-dimensional manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a8/}
}
TY  - JOUR
AU  - E. G. Mennike
TI  - Finite fundamental groups of three-dimensional manifolds
JO  - Matematičeskie zametki
PY  - 1995
SP  - 105
EP  - 117
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a8/
LA  - ru
ID  - MZM_1995_57_1_a8
ER  - 
%0 Journal Article
%A E. G. Mennike
%T Finite fundamental groups of three-dimensional manifolds
%J Matematičeskie zametki
%D 1995
%P 105-117
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a8/
%G ru
%F MZM_1995_57_1_a8
E. G. Mennike. Finite fundamental groups of three-dimensional manifolds. Matematičeskie zametki, Tome 57 (1995) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a8/

[1] Seifert H., Threlfall W., “Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes”, Math. Ann., 104 (1930–1931), 1–70 | MR

[2] Reidemeister K., “Kommutative Fundamentalgruppen”, Monatsh. f. Math. u. Phys., 43:1 (1935), 20–28 | DOI

[3] Zassenhaus H., “Über endliche Fastkorper”, Abh. Sem. Uni. Hamburg, 11 (1936), 187–220 | DOI

[4] Suzuki M., “An finite groups with cyclic Sylow subgroups for all odd primes”, Amer. J. Math., 77 (1955), 657–691 | DOI | MR | Zbl

[5] Milnor J., “Groups which act on $S^n$ without fixed points”, Amer. J. Math., 79 (1957), 623–630 | DOI | MR | Zbl

[6] Mennicke J., “Über Heegaarddiagramme vom Geschlecht zwei mit endlicher Fundamentalgruppe”, Arch. Math., 8 (1957), 192–198 | DOI | MR | Zbl

[7] Lee R., “Semicharacteristic classes”, Topology, 12:2 (1973), 183–199 | DOI | MR | Zbl