Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_1_a5, author = {A. S. Krivosheev}, title = {The {Schauder} basis in the solution space of a homogeneous convolution equation}, journal = {Matemati\v{c}eskie zametki}, pages = {57--71}, publisher = {mathdoc}, volume = {57}, number = {1}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a5/} }
A. S. Krivosheev. The Schauder basis in the solution space of a homogeneous convolution equation. Matematičeskie zametki, Tome 57 (1995) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a5/
[1] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982
[2] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956
[3] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980
[4] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971
[5] Napalkov V. V., “O bazise v prostranstve reshenii uravneniya svertki”, Mat. zametki, 43:1 (1988), 44–55 | MR
[6] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87(129):4 (1972), 459–489 | MR
[7] Grotendik A. O., “O prostranstvakh $(F)$ i $(DF)$”, Matematika, 2:3 (1958), 81–127
[8] Meise R., “Sequence space representations for $(DFN)$-algebras of entire functions modulo closed ideals”, J. Reine Angew. Math., 282 (1985), 59–95 | MR
[9] Khërmander D., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968
[10] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstvakh $(F)$ i $(LF)$”, Matematika, 2:2 (1958), 77–117
[11] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967