Analogs of the plane axioms for locally conformally K\"ahler manifolds
Matematičeskie zametki, Tome 57 (1995) no. 1, pp. 48-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1995_57_1_a4,
     author = {V. B. Kontsevaya},
     title = {Analogs of the plane axioms for locally conformally {K\"ahler} manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {48--56},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a4/}
}
TY  - JOUR
AU  - V. B. Kontsevaya
TI  - Analogs of the plane axioms for locally conformally K\"ahler manifolds
JO  - Matematičeskie zametki
PY  - 1995
SP  - 48
EP  - 56
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a4/
LA  - ru
ID  - MZM_1995_57_1_a4
ER  - 
%0 Journal Article
%A V. B. Kontsevaya
%T Analogs of the plane axioms for locally conformally K\"ahler manifolds
%J Matematičeskie zametki
%D 1995
%P 48-56
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a4/
%G ru
%F MZM_1995_57_1_a4
V. B. Kontsevaya. Analogs of the plane axioms for locally conformally K\"ahler manifolds. Matematičeskie zametki, Tome 57 (1995) no. 1, pp. 48-56. http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a4/

[1] Ianus S., Visinescu M., “Kaluza–Klein theory with scalar fields and generalised Hopf manifolds”, Class. Quantum. Grav., 3:3 (1987), 1317–1325 | DOI | MR

[2] Cartan E., Lecons sur la geometrie des espaces de Riemann, Gauthier–Villars, Paris, 1946 | Zbl

[3] Yano K., Mogi I., “On real representation of Kaehlerian manifolds”, Ann. Math., January, 61:1 (1955), 170–188 | DOI

[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[5] Vaisman I., “On locally conformal almost Kähler manifolds”, Isr. J. Math., 24:3–4 (1976), 338–351 | DOI | MR | Zbl

[6] Vaisman I., “A theorem on compact locally conformal Kähler manifolds”, Proc. Amer. Math. Soc., 75:2 (1979), 279–283 | DOI | MR | Zbl

[7] Kirichenko V. F., “Differentsialnaya geometriya $K$-prostranstv”, Itogi nauki i tekhn. Problemy geometrii, 8, VINITI, 1977, 139–161

[8] Likhnerovich A., Teoriya svyaznostei v tselom i gruppy golonomii, Gos. izd-vo in. lit., M., 1960

[9] Kontsevaya V. B., “Tozhdestva krivizny dlya lokalno konformno kelerovykh mnogoobrazii”, Tkani i kvazigruppy, Kalinin, 1990, 137–142 | MR | Zbl

[10] Hawley N. S., “Constant holomorphic sectional curvature”, Canad. Math. J., 5 (1953), 53–56 | MR | Zbl

[11] Igusa J., “On the structure of a certain class of Kähler manifolds”, Amer. J. Math., 76 (1954), 669–678 | DOI | MR | Zbl