Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1995_57_1_a4, author = {V. B. Kontsevaya}, title = {Analogs of the plane axioms for locally conformally {K\"ahler} manifolds}, journal = {Matemati\v{c}eskie zametki}, pages = {48--56}, publisher = {mathdoc}, volume = {57}, number = {1}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a4/} }
V. B. Kontsevaya. Analogs of the plane axioms for locally conformally K\"ahler manifolds. Matematičeskie zametki, Tome 57 (1995) no. 1, pp. 48-56. http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a4/
[1] Ianus S., Visinescu M., “Kaluza–Klein theory with scalar fields and generalised Hopf manifolds”, Class. Quantum. Grav., 3:3 (1987), 1317–1325 | DOI | MR
[2] Cartan E., Lecons sur la geometrie des espaces de Riemann, Gauthier–Villars, Paris, 1946 | Zbl
[3] Yano K., Mogi I., “On real representation of Kaehlerian manifolds”, Ann. Math., January, 61:1 (1955), 170–188 | DOI
[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981
[5] Vaisman I., “On locally conformal almost Kähler manifolds”, Isr. J. Math., 24:3–4 (1976), 338–351 | DOI | MR | Zbl
[6] Vaisman I., “A theorem on compact locally conformal Kähler manifolds”, Proc. Amer. Math. Soc., 75:2 (1979), 279–283 | DOI | MR | Zbl
[7] Kirichenko V. F., “Differentsialnaya geometriya $K$-prostranstv”, Itogi nauki i tekhn. Problemy geometrii, 8, VINITI, 1977, 139–161
[8] Likhnerovich A., Teoriya svyaznostei v tselom i gruppy golonomii, Gos. izd-vo in. lit., M., 1960
[9] Kontsevaya V. B., “Tozhdestva krivizny dlya lokalno konformno kelerovykh mnogoobrazii”, Tkani i kvazigruppy, Kalinin, 1990, 137–142 | MR | Zbl
[10] Hawley N. S., “Constant holomorphic sectional curvature”, Canad. Math. J., 5 (1953), 53–56 | MR | Zbl
[11] Igusa J., “On the structure of a certain class of Kähler manifolds”, Amer. J. Math., 76 (1954), 669–678 | DOI | MR | Zbl