On~approximation properties of sets with convex complement
Matematičeskie zametki, Tome 57 (1995) no. 1, pp. 20-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1995_57_1_a1,
     author = {V. S. Balaganskii},
     title = {On~approximation properties of sets with convex complement},
     journal = {Matemati\v{c}eskie zametki},
     pages = {20--29},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a1/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - On~approximation properties of sets with convex complement
JO  - Matematičeskie zametki
PY  - 1995
SP  - 20
EP  - 29
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a1/
LA  - ru
ID  - MZM_1995_57_1_a1
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T On~approximation properties of sets with convex complement
%J Matematičeskie zametki
%D 1995
%P 20-29
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a1/
%G ru
%F MZM_1995_57_1_a1
V. S. Balaganskii. On~approximation properties of sets with convex complement. Matematičeskie zametki, Tome 57 (1995) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/MZM_1995_57_1_a1/

[1] Balaganskii V. S., “O chebyshevskikh mnozhestvakh s vypuklym dopolneniem”, Priblizhenie funktsii polinomami i splainami, Sverdlovsk, 1985, 54–57 | Zbl

[2] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | Zbl

[3] Vlasov L. P., “O chebyshevskikh approksimativno vypuklykh mnozhestvakh”, Matematicheskie zametki, 2:2 (1967), 191–200 | Zbl

[4] Asplund E., “Chebyshev sets in Hilbert space”, Trans. Amer. Math. Soc., 17 (1969), 235–240 | DOI

[5] Franchetti C., Papini P. L., “Approximation properties of sets with bounded complements”, Proc. Roy. Soc., A89:1–2 (1981), 75–86, Edinburgh

[6] Stechkin S. B., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Rev. Mat. Pur. Appl., 8:1 (1963), 5–18

[7] Lau K.-S., “Almost Chebyshev subsets in reflexive Banach spaces”, Indiana Univ. Math. J., 27:5 (1978), 791–795 | DOI | Zbl

[8] Konyagin S. V., “Ob approksimativnykh svoistvakh zamknutykh mnozhestv v banakhovykh prostranstvakh i kharakterizatsii silno vypuklykh prostranstv”, DAN SSSR, 251:2 (1980), 276–279 | MR

[9] Konyagin S. V., Approksimativnye svoistva mnozhestva v lineinykh normirovannykh prostranstvakh, Diss. ... kand. fiz.-mat. nauk, Moskva, 1982

[10] Vlasov L. P., “Neskolko teorem o chebyshevskikh mnozhestvakh”, Matematicheskie zametki, 11:2 (1972), 135–144 | MR | Zbl

[11] Fitzpatrick S., “Metric projections and the differentiability of distance functions”, Bull. Austral. Math. Soc., 22:2 (1980), 291–312 | DOI | MR | Zbl

[12] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, Moskva, 1979

[13] Namioka I., Phelps R. R., “Banach spaces wich are Asplund spaces”, Duke Math. J., 42:4 (1975), 735–750 | DOI | MR | Zbl

[14] Oshman E. V., “O nepreryvnosti metricheskoi proektsii v prostranstve Banakha”, Matem. sb., 80:2 (1969), 181–194 | MR | Zbl

[15] Nissenzweig A., “$w^*$-sequential convergence”, Israel J. Math., 22:3–4 (1975), 266–272 | DOI | MR