Suspensions: Volumes, immersibility, and rigidity
Matematičeskie zametki, Tome 56 (1994) no. 6, pp. 56-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_56_6_a5,
     author = {I. G. Maksimov},
     title = {Suspensions: {Volumes,} immersibility, and rigidity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {56--63},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a5/}
}
TY  - JOUR
AU  - I. G. Maksimov
TI  - Suspensions: Volumes, immersibility, and rigidity
JO  - Matematičeskie zametki
PY  - 1994
SP  - 56
EP  - 63
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a5/
LA  - ru
ID  - MZM_1994_56_6_a5
ER  - 
%0 Journal Article
%A I. G. Maksimov
%T Suspensions: Volumes, immersibility, and rigidity
%J Matematičeskie zametki
%D 1994
%P 56-63
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a5/
%G ru
%F MZM_1994_56_6_a5
I. G. Maksimov. Suspensions: Volumes, immersibility, and rigidity. Matematičeskie zametki, Tome 56 (1994) no. 6, pp. 56-63. http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a5/

[1] Connelly R., “A counter example to the rigidity conjecture for polyhedra”, Publ. Math. I.H.E.S., 47 (1978), 333–338

[2] Gluck H., “Almost all simple connected closed surfaces are rigid”, Lect. Notes in Math., 438, 1975, 225–240 ; Issledovaniya po metricheskoi teorii poverkhnostei, Sb. statei, Mir, M., 1980, 148–161 | MR

[3] Connelly R., An attack on Rigidity, Preprint, Corneell University, 1974; Issledovaniya po metricheskoi teorii poverkhnostei, Sb. statei, Mir, M., 1980, 164–209