Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1994_56_6_a2, author = {V. V. Belov and M. F. Kondrat'eva}, title = {Hamiltonian systems of equations for quantum means}, journal = {Matemati\v{c}eskie zametki}, pages = {27--39}, publisher = {mathdoc}, volume = {56}, number = {6}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a2/} }
V. V. Belov; M. F. Kondrat'eva. Hamiltonian systems of equations for quantum means. Matematičeskie zametki, Tome 56 (1994) no. 6, pp. 27-39. http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a2/
[1] Ehrenfest P., “Bemerkung uber die Gultigkeit der klassischen Mechanic”, Z. Phys., 45 (1927), 455–457 | DOI
[2] Berezin F. A., Shubin M. A., Uravnenie Shrëdingera, MGU, M., 1983
[3] Bagrov V. G., Belov V. V., Rogova A. M., “Kvaziklassicheski sosredotochennye sostoyaniya v kvantovoi mekhanike”, TMF, 90:1 (1992), 48–55 | MR
[4] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, M., 1990
[5] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, M., 1991
[6] Bagrov V. G., Belov V. V., Kondrateva M. F., “Kvaziklassicheskoe priblizhenie v kvantovoi mekhanike. Novyi podkhod”, TMF, 98:1 (1994), 48–55 | MR | Zbl
[7] Belov V. V., Kvaziklassicheskii predel uravnenii dvizheniya kvantovykh srednikh dlya nerelyativistskikh sistem s kalibrovochnymi polyami, Preprint No 58, SO AN SSSR, Tomsk, 1989
[8] Belov V. V., Maslov V. P., “Kvaziklassicheskie traektorno-kogerentnye sostoyaniya operatora Diraka s anomalnym vzaimodeistviem Pauli”, DAN SSSR, 305 (1989), 574–580 | MR
[9] Belov V. V., Kondrateva M. F., ““Klassicheskie” uravneniya dvizheniya v kvantovoi mekhanike s kalibrovochnymi polyami”, TMF, 92:1 (1992), 41–61 | MR
[10] Sadov S. Yu., “O dinamicheskoi sisteme, voznikshei iz odnoi konechnomernoi approksimatsii uravneniya Shrëdingera”, Matem. zametki, 56:3 (1994), 118–133 | MR | Zbl
[11] Bagrov V. G., Belov V. V., Rogova A. M., Trifonov A. Yu., “The quasiclassical localization of the states and obtaining of classical equations of motion from quantum theory”, Modern Phys. Lett. B, 7:26 (1993), 1667–1675 | DOI
[12] Bagrov V. G., Belov V. V., Kondratyeva M. F., Rogova A. M., Trifonov A. Yu., “The quasiclassical localization of the states and new approach to quasiclassical approximation in quantum mechanics”, Proc. 5th and 6th Lomonosov Conferences on Elementary Particles Physics “Particle physics, gauge fields and astrophysics”, ed. A. Studenikin, Accademia Nazionale dei Lincei, Rome, Italy, 1994
[13] Kondrateva M. F., Kvaziklassicheskie traektorno-kogerentnye sostoyaniya i evolyutsiya kvantovykh srednikh, Diss. ... kand. fiz.-matem. nauk, TGU, Tomsk, 1993
[14] Tsue Y., Fujiwara Y., “Time-Dependent Variational Approach in Terms of Squeezed Coherent States”, Progress of Theoretical Physics, 86:2 (1991), 443–466 | DOI | MR
[15] Bagrov V. G., Belov V. V., Kondratyeva M. F., Rogova A. M., Trifonov A. Yu., “A new formulation of quasi-classical approximation in quantum mechanics”, J. Moscow Phys. Soc., 3 (1993), 1–12 | MR