The Szeg\H o inequality for derivatives of a~conjugate trigonometric polynomial in~$L_0$
Matematičeskie zametki, Tome 56 (1994) no. 6, pp. 10-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_56_6_a1,
     author = {V. V. Arestov},
     title = {The {Szeg\H} o inequality for derivatives of a~conjugate trigonometric polynomial in~$L_0$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {10--26},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a1/}
}
TY  - JOUR
AU  - V. V. Arestov
TI  - The Szeg\H o inequality for derivatives of a~conjugate trigonometric polynomial in~$L_0$
JO  - Matematičeskie zametki
PY  - 1994
SP  - 10
EP  - 26
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a1/
LA  - ru
ID  - MZM_1994_56_6_a1
ER  - 
%0 Journal Article
%A V. V. Arestov
%T The Szeg\H o inequality for derivatives of a~conjugate trigonometric polynomial in~$L_0$
%J Matematičeskie zametki
%D 1994
%P 10-26
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a1/
%G ru
%F MZM_1994_56_6_a1
V. V. Arestov. The Szeg\H o inequality for derivatives of a~conjugate trigonometric polynomial in~$L_0$. Matematičeskie zametki, Tome 56 (1994) no. 6, pp. 10-26. http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a1/

[1] Szegö G., “Über einen Satz des Hern Serge Bernstein”, Schrift. K$\ddot {o}$nigsberg. Gelehrten Gesellschaft, 5:4 (1928), 59–70

[2] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965

[3] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl

[4] Taikov L. V., “O sopryazhennykh trigonometricheskikh polinomakh”, Matem. zametki, 48:4 (1990), 110–114 | MR | Zbl

[5] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 1, 2, Mir, M., 1985

[6] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 1, 2, Nauka, M., 1978

[7] Marden M., “The geometry of the zeros of a polynomials in a complex variable”, Math. Survey, 3, Amer. Math. Soc., New York, 1949 | Zbl

[8] Arestov V. V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Matem. zametki, 48:4 (1990), 7–18 | MR

[9] De Bruijn N. G., Springer T. A., “On the zeros of composition-polynomials”, Proc. Kon. Nederl. Akad. Wetensch., 50 (1947), 895–903 ; Indag. Math., 9 (1974), 406–414 | MR | Zbl

[10] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962

[11] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 1, Nauka, M., 1967