Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1994_56_6_a1, author = {V. V. Arestov}, title = {The {Szeg\H} o inequality for derivatives of a~conjugate trigonometric polynomial in~$L_0$}, journal = {Matemati\v{c}eskie zametki}, pages = {10--26}, publisher = {mathdoc}, volume = {56}, number = {6}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a1/} }
V. V. Arestov. The Szeg\H o inequality for derivatives of a~conjugate trigonometric polynomial in~$L_0$. Matematičeskie zametki, Tome 56 (1994) no. 6, pp. 10-26. http://geodesic.mathdoc.fr/item/MZM_1994_56_6_a1/
[1] Szegö G., “Über einen Satz des Hern Serge Bernstein”, Schrift. K$\ddot {o}$nigsberg. Gelehrten Gesellschaft, 5:4 (1928), 59–70
[2] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965
[3] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl
[4] Taikov L. V., “O sopryazhennykh trigonometricheskikh polinomakh”, Matem. zametki, 48:4 (1990), 110–114 | MR | Zbl
[5] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 1, 2, Mir, M., 1985
[6] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 1, 2, Nauka, M., 1978
[7] Marden M., “The geometry of the zeros of a polynomials in a complex variable”, Math. Survey, 3, Amer. Math. Soc., New York, 1949 | Zbl
[8] Arestov V. V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Matem. zametki, 48:4 (1990), 7–18 | MR
[9] De Bruijn N. G., Springer T. A., “On the zeros of composition-polynomials”, Proc. Kon. Nederl. Akad. Wetensch., 50 (1947), 895–903 ; Indag. Math., 9 (1974), 406–414 | MR | Zbl
[10] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962
[11] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 1, Nauka, M., 1967