Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1994_56_5_a0, author = {S. A. Antonyan}, title = {Existence of a cut for arbitrary compact transformations groups}, journal = {Matemati\v{c}eskie zametki}, pages = {3--9}, publisher = {mathdoc}, volume = {56}, number = {5}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_5_a0/} }
S. A. Antonyan. Existence of a cut for arbitrary compact transformations groups. Matematičeskie zametki, Tome 56 (1994) no. 5, pp. 3-9. http://geodesic.mathdoc.fr/item/MZM_1994_56_5_a0/
[1] Mostow G. D., “Equivariant embeddings in Euclidean spaces”, Ann. Math., 65:3 (1967), 432–446 | DOI | MR
[2] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | Zbl
[3] Palais R. S., The classification of $G$-spaces, Mem. AMS, 36, Providence R. I., 1960
[4] Antonian S. A., “Equivariant polyhedra and shape”, 9th Inter. Conf. on Topol. and Appl., Abstracts, Kiev, 1992, 53
[5] Antonian S. A., “Equivariant embeddings into $G-AR$'s”, Glasnik Matem., 22:1 (1987), 503–533 | MR | Zbl
[6] Antonyan S. A., “Retraktsionnye svoistva prostranstva orbit”, Matem. sb., 137:3 (1988), 300–318 | Zbl
[7] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973 | Zbl
[8] Antonyan S. A., “Novoe dokazatelstvo suschestvovaniya bikompaktnogo $G$-rasshireniya”, Comment. Math. Univ. Carolinae, 22:4 (1981), 761–772 | MR | Zbl
[9] Szenthe J., “On the topological characterization of transitive Lie group actions”, Acta Sci. Math. Szeged, 36:3–4 (1974), 323–344 | MR | Zbl
[10] Mardešić S., “On invers limits of compact spaces”, Glasnik Matem. Fiz. Astr., 13:4 (1958), 249–255 | MR | Zbl