Sequential regularizability in the sense of Maslov for improperly posed problems
Matematičeskie zametki, Tome 56 (1994) no. 4, pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_56_4_a6,
     author = {E. N. Domanskii},
     title = {Sequential regularizability in the sense of {Maslov} for improperly posed problems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_4_a6/}
}
TY  - JOUR
AU  - E. N. Domanskii
TI  - Sequential regularizability in the sense of Maslov for improperly posed problems
JO  - Matematičeskie zametki
PY  - 1994
SP  - 67
EP  - 78
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_56_4_a6/
LA  - ru
ID  - MZM_1994_56_4_a6
ER  - 
%0 Journal Article
%A E. N. Domanskii
%T Sequential regularizability in the sense of Maslov for improperly posed problems
%J Matematičeskie zametki
%D 1994
%P 67-78
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_56_4_a6/
%G ru
%F MZM_1994_56_4_a6
E. N. Domanskii. Sequential regularizability in the sense of Maslov for improperly posed problems. Matematičeskie zametki, Tome 56 (1994) no. 4, pp. 67-78. http://geodesic.mathdoc.fr/item/MZM_1994_56_4_a6/

[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[2] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1968), 501–504

[3] Tikhonov A. N., “O regulyarizatsii nekorrektno postavlennykh zadach”, DAN SSSR, 153:1 (1963), 49–52 | MR | Zbl

[4] Maslov V. P., “Suschestvovanie resheniya nekorrektnoi zadachi ekvivalentno skhodimosti regulyarizatsionnogo protsessa”, UMN, 28:3 (1963), 183–184

[5] Domanskii E. N., “Ob ekvivalentnosti skhodimosti regulyarizuyuschego algoritma suschestvovaniyu reshetki nekorrektnoi zadachi”, UMN, 42:5 (1987), 101–118 | MR

[6] Domanskii E. N., “Neobkhodimoe i dostatochnoe uslovie nepreryvnoi regulyarizuemosti po Maslovu razryvnykh otobrazhenii”, XIV shkola po teorii operatorov v funktsionalnykh prostranstvakh, Tezisy dokladov, chast 1, Novgorod, 1989, 81

[7] Vinokurov V. A., “O ponyatii regulyarizuemosti razryvnykh otobrazhenii”, Zhurn. vychisl. matem. i matem. fizika, 11:5 (1971), 1097–1112 | MR | Zbl

[8] Ivanov V. K., “O ravnomernoi regulyarizatsii neustoichivykh zadach”, Sib. matem. zhurn., 7:3 (1966), 546–558 | MR | Zbl

[9] Lavrentev M. M., Vasilev V. G., “O postanovke nekotorykh nekorrektnykh zadach matematicheskoi fiziki”, Sib. matem. zhurn., 7:3 (1966), 559–576 | MR

[10] Domanskii E. N., “K voprosu o razreshimosti lineinogo operatornogo uravneniya”, Izvestiya vuzov. Matematika, 1979, no. 2, 25–30 | MR | Zbl

[11] Stechkin S. B., Ulyanov P. L., Podposledovatelnosti skhodimosti ryadov, Tr. MIAN, LXXXVI, Nauka, M., 1965 | MR

[12] Vinokurov V. A., Priblizhennoe vychislenie funktsii s netochno zadannym argumentom, Diss. ... dokt. fiz.-matem. nauk, MGU, M., 1979

[13] Kadets M. I., Kadets V. M., Fonf V. P., “O razreshayuschikh i strogo razreshayuschikh regulyarizatorakh”, Sib. matem. zhurn., 29:3 (1988), 59–63 | MR

[14] Kuratovskii K. K., Topologiya, T. 1, Mir, M., 1966

[15] Vinokurov V. A., “Regulyarizuemost i analiticheskaya predstavimost”, DAN SSSR, 220:2 (1975), 269–272 | MR | Zbl

[16] Khausdorf F., Teoriya mnozhestv, Gostekhizdat, M., 1937

[17] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | Zbl